
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

Towards real-time predictions using emulators of
agent-based models

Minh Kieu, Hoang Nguyen, Jonathan A. Ward & Nick Malleson

To cite this article: Minh Kieu, Hoang Nguyen, Jonathan A. Ward & Nick Malleson (2022):
Towards real-time predictions using emulators of agent-based models, Journal of Simulation, DOI:
10.1080/17477778.2022.2080008

To link to this article: https://doi.org/10.1080/17477778.2022.2080008

Published online: 05 Jun 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2022.2080008
https://doi.org/10.1080/17477778.2022.2080008
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2080008
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2022.2080008
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2080008&domain=pdf&date_stamp=2022-06-05
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2080008&domain=pdf&date_stamp=2022-06-05

Towards real-time predictions using emulators of agent-based models
Minh Kieu a, Hoang Nguyen b, Jonathan A. Ward c,d and Nick Malleson d,e

aDepartment of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand; bTridant Pty Ltd, Sydney, NSW 2000,
Australia; cSchool of Mathematics, University of Leeds, Leeds, UK; dAlan Turing Institute, UK; eSchool of Geography, University of Leeds,
Leeds, UK

ABSTRACT
The use of Agent-Based Models (ABMs) to make predictions in real-time is hindered by their
high computation cost and the lack of detailed individual data. This paper proposes a new
framework to enable the use of emulators, also referred to as surrogate models or meta-
models, coupled with ABMs, to allow for real-time predictions of the behaviour of a complex
system. The case study is that of pedestrian movements through an environment. We evaluate
two different types of emulators: a regression emulator based on a Random Forest and a time-
series emulator using a Long Short-Term Memory neural network. Both emulators perform
well, but the time-series emulator proves to generalise better to cases where the number of
agents in the system is not known a priori. The results have implications for the real-time
modelling of human crowds, suggesting that emulation is a feasible approach to modelling
crowds in real-time, where computational complexity prohibits the use of an ABM directly.

ARTICLE HISTORY
Received 15 March 2021
Accepted 13 May 2022

KEYWORDS
Agent-based modelling;
emulators; meta-modelling;
machine learning

1. Introduction

Agent-based modelling is a class of computer simula
tion that excels in its ability to simulate complex
systems (Bonabeau, 2002). Instead of deriving aggre
gated equations of system dynamics, agent-based
models (ABMs) encapsulate system-wide characteris
tics from the behaviours and interactions of individual
agents, for instance, humans, animals or vehicles.
ABMs have traditionally been used to understand the
dynamics of a system in a wide variety of contexts,
such as delays in urban traffic (Balmer et al., 2009) and
emergency evacuations (Schoenharl & Madey, 2011).

However, the use of ABMs to analyse systems is not
usually possible in real-time. For example, ABMs are
ideally suited to simulating crowds of people (Henein &
White, 2005), but such models are currently con
strained to “offline” use and cannot inform the manage
ment of busy places in real-time. It is, in fact, very
challenging to develop real-time ABMs (Swarup &
Mortveit, 2020) because there are serious methodologi
cal issues associated with updating agent-based models
in response to new data that need to be overcome (Clay
et al., 2020). In addition, even relatively simple ABMs
can become extremely computationally intensive as the
number of agents increases, which poses technical chal
lenges as simulation results are required rapidly to be
useful for the real-time management of systems.
Existing studies report a drastic increase (sometimes
exponential) in computation time as the population of
agents increases in size (Niemann et al., 2021).

It is also often impractical, from a data perspective, to
implement a 1-to-1 simulation of a human system in
real-time. Most crowd data are aggregated in the first
place – e.g., those created through the use of footfalls
sensors or pedestrian counters – and the introduction of
regulations such as the General Data Protection
Regulation (GDPR) and the California Consumer
Privacy Act make it more difficult to capture individual-
level data and hence for modellers to model a real person
and their intentions in a human system. Aggregated data
can be easily handled by statistical and machine learning
models for real-time purposes, but these approaches face
two challenges. Firstly, statistical models are often purely
data-driven and cannot provide additional outputs that
are important in understanding the inherent system
dynamics, as ABMs can do. For instance, machine learn
ing models can learn to predict future aggregate esti
mates, such as future footfall counts, but cannot
provide additional processed outputs such as delays or
pedestrian density, which are provided when using an
ABM to simulate the system from the “bottom up”.
Secondly, it can be very difficult to obtain the substantial
volume of data required to train a versatile statistical
model. Even if data are collected over a long period,
some system states may never be observed, and
a statistical model will struggle to make out-of-sample
predictions in these cases.

This leads us to the core idea of this paper. Rather
than attempting to use ABMs directly to conduct
real-time analyses, we use the explanatory power

CONTACT Minh Kieu minh.kieu@auckland.ac.nz Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New
Zealand

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2022.2080008

© 2022 The Operational Research Society

http://orcid.org/0000-0001-7798-6195
http://orcid.org/0000-0002-1489-0142
http://orcid.org/0000-0002-2469-7768
http://orcid.org/0000-0002-6977-0615
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2022.2080008&domain=pdf&date_stamp=2022-06-03

and flexibility of ABMs to empower another model
that can be used in real-time for prediction and
management purposes. The ABM can be used to
simulate the complex system, then in real-time
another model, that can make faster predictions,
can be used to represent the ABM. Hence this
paper aims to develop an emulators framework, also
referred to as surrogate models or meta-models that
provides a mapping between some aggregated data
(that we assume are available in real-time) and out
puts from an ABM. In effect, an ABM is used offline
to create a large volume of data to train an emulator,
and the trained emulator can then use real-world
aggregate data to make future predictions in real-
time. We also compare two main types of emulators:
a regression and a time-series emulator to find out
which one is more suitable to make predictions in
real-time.

The remainder of this manuscript is structured as
follows. Section 2 reviews the literature on emulators
for computer codes in general and ABMs specifically.
Section 3 outlines the ABM and emulation methods
developed in this research. Section 5 describes the
results of several numerical case studies that compare
the performance of the two emulators considered.
Finally, Section 6 concludes and suggests several direc
tions for future research. The source codes for the
ABM, as well as the emulators can be found at [TBA
link to our Github].

2. Literature review

An emulator is a statistical representation of
a simulator, where the simulator itself is considered
an unknown function (Bastos & O’Hagan, 2009). The
emulator attempts to depict the relationship between
the input and output variables of the simulator
(Rasouli & Timmermans, 2013), ideally producing
output much more efficiently than the simulator.
This section reviews the existing approaches to build
ing emulators for complex simulators, including
ABMs. The emulator is a fundamental concept in the
physical sciences, commonly used in fields such as
climate modelling (Krasnopolsky et al., 2005) and
biogeochemistry (Conti & O’Hagan, 2010) where
simulation models are often too costly for real-time
implementation. Recent efforts have shown the bene
fits of emulators for complex (Krasnopolsky et al.,
2005; Rasouli & Timmermans, 2013), dynamic
(Conti et al., 2009; Conti & O’Hagan, 2010) and sto
chastic (Baker et al., 2019; Moutoussamy et al., 2015)
simulation models. Despite this enthusiasm, there
have been a limited number of attempts at emulating
ABMs (Bijak et al., 2013; Heard, 2014; Hilton, 2017;
Oyebamiji et al., 2017; Rasouli & Timmermans, 2013),
let alone real-time ABMs. This section reviews emula
tors and emulators for ABMs in more detail.

2.1. Analytical emulators

Analytical emulators aim to find a tractable, para
metric smoothing function depicting the relationship
between input and output variables. Rasouli and
Timmermans (2013) aims to emulate the daily dis
tance travelled per person in a microsimulation
model and an ABM of traffic flow. A regression
model with main effects plus first-order interaction
effects was developed. The authors also explored the
impact of the number of simulation runs on the per
formance of the emulator, with the results suggesting
that the accuracy of the emulator increases with the
number of simulation runs. However, this paper only
aims to develop a direct statistical mapping between
inputs and outputs, without capturing the dynamic
changes in the system. Lafuerza et al. (2016a) devel
oped an analytically tractable emulator of an ABM of
social interaction, which allows mathematical analysis
to be performed. Emulators such as these are analyti
cally tractable with an elegant parametric formulation
that can help to elucidate the relationship between
input and output variables. However, they are often
limited to the instantaneous dynamics of the system
where the analytical formulations are developed, and
will need to be revised as the system under study
changes over time. Revising the analytical formula
tions of these emulators is a complex and time-
consuming task, that would limit the usefulness of
analytical emulators for real-time applications.

2.2. Meta-modelling approaches

Meta-modelling emulators use statistical or machine
learning techniques to learn the mapping between the
input and output variables of a simulator. These are
more flexible than analytical emulators because the
same technique can be implemented to “retrain” the
emulator if updates are needed, instead of revising the
emulator itself. Meta-modelling emulators can learn
complex behaviours, making them more widely
applicable than analytical approaches.

Gaussian Process (GP) emulators (also referred to
as Kriging) are among the most popular emulator
techniques (Bastos & O’Hagan, 2009). GP emulators
have been developed for univariate (Oakley &
O’Hagan, 2002) and multivariate (Higdon et al.,
2008) problems, as well as dynamic (Conti et al.,
2009; Conti & O’Hagan, 2010) and stochastic (Baker
et al., 2019; Moutoussamy et al., 2015) simulators.
However, the complexity of parameter inference for
a GP is usually Oðn3Þ, which means that it is actually
very expensive to train and adapt a GP emulator of
a high-dimension simulator such as an ABM. Other
machine learning techniques for emulators, such as
Neural and Bayesian Networks (Farah et al., 2014;
Shrestha et al., 2009), have also been explored.

2 M. KIEU ET AL.

Machine learning methods are generally even more
flexible than Gaussian Processes, take less time to
train and, most importantly, they excel at providing
a non-linear mapping between the input and output
variables of the simulator. These features make them
strong candidates for emulating a real-time simulator.

2.3. Emulators of ABMs

The main difference between emulators of ABMs and
emulators of other simulation models is that ABMs are
fundamentally driven by the micro-interactions of
discrete entities (“agents”). This allows models with
even relatively simple behavioural rules to produce
complex outcomes. Many emulators of ABMs attempt
to re-produce similar dynamics by simplifying the
ABM itself, e.g., by reducing the number of agents or
simplifying their behaviour (Barnes et al., 2021;
Deissenberg et al., 2008; Lafuerza et al., 2016b;
Niemann et al., 2021; Rhodes et al., 2016; Tregubov
& Blythe, 2020). Rhodes et al. (2016) showed that
ABMs can be simplified by several orders of magni
tude and still produce a very similar system-level
behaviour while reducing runtime and data output.
In a similar approach, Lafuerza et al. (2016b) aimed to
understand a complex intricate ABM of voting using
a series of simplified models and showed that a certain
range of modelling capabilities can be maintained in
simplified models over a particular range of parameter
values (Lafuerza et al., 2016b). In Tregubov and Blythe
(2020), several model simplification methods such as
sub-sampling agents and simplifying agent behaviour
were evaluated, showing improvements in computa
tion time with little reduction in model predictive
accuracy. While simplification may help reduce the
computation burden of ABMs, such an approach can
not be guaranteed to generalise and, as there are still
interactions that need to be computed, even the sim
plest ABM required to simulate a particular system
might be computationally expensive.

Meta-modelling and analytical emulators have the
potential to resolve the computation issue by trans
forming the emulation problem to that of simply find
ing a mapping function between the inputs and
outputs of ABMs. The well-trained emulator might
be able to learn all combinations of inputs/outputs
such that in real-time the emulator can be used in
place of the ABMs for computational efficiency.
There are studies such as Niemann et al. (2021)
which used ordinary and stochastic differential equa
tions (SDEs) to approximate stochastic ABMs of med
ium to large agent populations, but to date, many of
the emulators of ABMs that have been developed are
GPs (Bijak et al., 2013; Dosi et al., 2018; Heard, 2014;
Hilton, 2017). GPs provide a confidence interval for
each estimate, so fewer model runs are required to
explore the parameter space and statistical

characteristics of the ABM. Bijak et al. (2013) pre
sented a Semi-Artificial Model of Population, which
is a fusion of demographic micro-simulation and an
ABM, to address the problem of modelling population
dynamics, specifically the impacts of certain para
meters on population size and share of married agents.
Dosi et al. (2018) analysed policy impacts using ABMs,
where GPs were used as part of their sensitivity ana
lysis on key variables and parameters. The benefits of
GPs in the model calibration and statistical inference
problem of ABMs have also been explored in Heard
(2014), where observed data and ABM simulation
outputs were used to fit and calibrate GP approxima
tions. In Hilton (2017), a GP emulator was used to
quantify the uncertainty in the outputs of ABMs and
also to calibrate an ABM against empirical observa
tions. Oyebamiji et al. (2017), Oyebamiji et al. (2019))
developed GP regression models to emulate dynamic
and stochastic individual-based models of microbial
communities.

The majority of meta-modelling emulators have
been designed to support calibration and sensitivity
analysis rather than for use in making real-time pre
dictions. When attempting to predict in real-time, the
computation complexity is not the only challenge, but
also the lack of individual-level data for a 1-to-1 simu
lation. This paper aims to develop an emulator frame
work that can work with aggregated data, that are
widely available, to represent an ABM and make pre
dictions in real-time.

3. Methodology

We propose a framework for real-time prediction
using emulators of ABMs. We have developed this
framework to use the emulator to make real-time
predictions of the near future, whilst having the flex
ibility to adapt to incoming data. Broadly, our pro
posed approach is to develop an ABM to represent the
target system, train an emulator using aggregated data
outputs from the ABM, and then use the emulator,
rather than the ABM itself, to make real-time predic
tions. The use of the emulator in this setting is advan
tageous because: (i) the ABM is too computationally
expensive to return results in an adequate time; and
(ii) the emulator makes predictions using aggregate
data, whose availability is more likely than the indivi
dual-level data. This section outlines the methodology
in detail.

Let Zt 2 R r denotes the set of outputs from an ABM
at discrete time t 2 Z and since the ABM is stochastic,
variables in Zt are random. The choice of discrete time
is motivated by our assumption that aggregated data
will be made at discrete points in time and projecting
these onto the integers is purely for convenient nota
tion. We assume that the ABM is parameterised by
a vector of parameters θ, that might be completely

JOURNAL OF SIMULATION 3

unseen in real-time. Zt consists of ½Xt; yt�. Observation
data Xt are assumed available in real-time, and yt is the
additional output from an ABM which is often unob
servable in real-time, or completely unobservable. Note
that in practice we would have to calibrate the values
of parameters θ such that the ABM can adequately
represent the underlying system, and replicate Xt to
be sufficiently similar to the real aggregated data. In
this paper, we assume that our ABM has already been
calibrated and the provided Xt are similar to the real
data. We are then interested in an emulator function
f that can map the available aggregated data Xt with
Zt , i.e., Zt ¼ f ðXtÞ, and also can make predictions,
e.g., Ztþk ¼ f ðXtÞ with k> 0.

We propose a “bi-phase” framework, illustrated in
Figure 1. The first phase of the framework, the
Training phase, aims to train the emulator so that it
can predict the behaviour of the real system. We
assume that the emulator cannot learn this behaviour
from the underlying system directly for two reasons.
Firstly, there may be important information required
by the emulator that can only be extracted from the
ABM. For example, in the case study used in this paper
we are interested in the delay caused to individual
pedestrians in a crowd. This can be calculated by
examining the individual agents in the model but not
inferred from aggregate (real world) data. Secondly,
even if a system is studied over a long period, likely,
some more extreme system states will not occur.
Therefore the emulator will be trained on “business
as usual” system behaviour and will not be able to
work well in more extreme scenarios. Using an
ABM, not only can a large volume of training data

be created, but a wide variety of system states can also
be simulated. Therefore we develop an ABM to repre
sent the target system (pedestrians moving through
a corridor in this case) and use the ABM to create
simulated input and output data for emulator training.
This training phase is done before real-time imple
mentation of the emulator as it requires multiple runs
of the ABM to generate the training data, which will be
a computationally-expensive step. Since the training
data do not need to be produced quickly, as would be
the case if the ABM were making real-time predic
tions, the computation time at this stage in the frame
work is not problematic. Also, the emulator will not
need to be retrained unless there is a significant change
to the underlying system, in which case the ABM will
also need to be recalibrated and re-run to produce new
data that reflect the new dynamics of the system. As
Section 4.2 will discuss, the emulator is trained and
tested using well-established machine learning
methods.

In the second phase of the framework, the Real-
time phase, information about the system is collected
in real-time and these data are used as inputs to the
trained emulator. In this manner, the emulator can
predict the short-term future behaviour of the system
without the need for running an ABM. It is important
to note that, in this preliminary application, the real-
time phase does not actually use real-world data.
Instead we follow a “pseudo-truth” or “digital-twin”
experiment approach, similar to Wang and Hu (2015)
and Kieu et al. (2020) to evaluate this framework.
Rather than using real observations, the data will be
generated from the ABM. This is advantageous

c1(t-1)
...
c10(t-1)
...
c1(t-L)

Time t Time t+1

1. Training phase

2. Real-time phase

...

Quasi real-time
pedestrian counts
L >0

c1(t+k)
c2(t+k)
...
c10(t+k)
d(t+k)

Forecasts of
pedestrian counts and delay
for a future k timesteps (k>0)

Quasi real-time
pedestrian counts
L>0

Training
inputs:
counts at
each sensors

Training
outputs:
counts and
delay

c1(t)
...
c10(t)
...
c1(t-L+1)

Possible number
of pedestrians

Figure 1. Study framework.

4 M. KIEU ET AL.

because it means that the true system state can be
known, so errors can be calculated accurately. In addi
tion, we can evaluate the framework on a wide range
of synthetic data to “stress test” it under various sce
narios. Future work will move towards using real
crowd data, such as those made available by Zhou
et al. (2012). As Section 4 will discuss, we assume
that ten pedestrian sensors are deployed in the envir
onment, and count the number of pedestrians who
pass through them. Hence the task of the emulator is
to estimate what the subsequent counts at these sensed
points will be. In addition, the emulator is also tasked
with estimating the overall delay to the pedestrians; in
congested scenarios it will take longer for pedestrians
to be able to traverse the environment.

The need for fast emulators means that GP emula
tors are not ideal due to their high computational
complexity, so we do not consider them here.
Instead, we test two different types of well-known
machine learning emulators. We adopt a static emu
lator, Random Forest (RF) regression, because it is
widely used and has been shown to be effective in
modelling non-linear relationships. As RF regression
does not directly treat the data as a time-series, we also
experiment with a Long Short-term Memory (LSTM)
neural network, which uses multiple time steps in the
near past to forecast the near future. The following
sub-sections provide brief descriptions of each these
techniques.

3.1. Regression emulator: Random forest

RF regression models are typically trained to predict
univariate output, so multiple models have to be
trained to predict each of the q required outputs in
Yt (in this case the counts of pedestrians at different

sensor locations). In effect, we consider this emulator
as an “ensemble regression emulator”, as illustrated in
Figure 2.

The RF is an ensemble method that makes predic
tions by combining the decisions from multiple indi
vidual models, i.e.,

f ðxÞ ¼
1
B

XB

i¼1
TiðxÞ; (1)

where each individual model Ti is a simple Decision
Tree (Breiman, 2001), built upon a statistical techni
que called bagging. Interested readers may refer to
Breiman (2001) for a more detailed and formal
description. The effectiveness of RFs comes from two
key concepts:

● Each tree is built and learnt from a random sam
pling of training observations. This is to reduce
the overall variance in the entire RF model but
not at the cost of increasing bias;

● Splitting nodes in each tree using random sub
sets. This reduces the potential for over-fitting
because each tree only sees a subset of all training
features when deciding to split a node.

We train 11 RF models for each value of look-
ahead time step k, where the first 10 models predict
the counts at each of the 10 pedestrian sensors at
time step t þ k and the eleventh model predicts the
delay to the pedestrians. These models are trained
using the same input: the pedestrian counts at the
previous time step t � 1 (as showed in Figure 2).
The training input for the regression emulator is
2D array of size D� 10, where D is the sample size
of the input data.

Figure 2. A regression emulator of agent-based models using random forest regression.

JOURNAL OF SIMULATION 5

3.2. Time-series emulator: Long short-term
memory

One major disadvantage of regression techniques in
learning time-series patterns, even for powerful techni
ques such as RFs, is that there is no consideration of
longer-term temporal dependency in the data, e.g., the
ability to learn from multiple historical observations to
predict the next state. In regression models, time can be
used as a variable to predict, but there is no dependency
between successive time steps. We define the frame
work for the ABM time-series emulator as in Figure 3.

While it is possible to include historical observation
data in the input vector Xt , we might expect that recent
observations will have a significant temporal correla
tion. To account for this, the time-series emulator
takes inputs from Xt� L to Xt� 1, where L> 0 defines
a “look-back window”. Defining the value of L is
a trade-off problem that has to be solved through
experimentation. Choosing L too large leads to unne
cessarily long computation time and numerical
instability, but too small L will not fully capture the
temporal dependency between time steps. After
experimenting with different values we take L ¼ 5
based on the resulting Mean Absolute Error. Thus,
the training input for the time-series emulator is 3D
array of size D� 10� L.

For our time-series emulator, we adopt the Long
Short-term Memory (LSTM) recurrent neural net
work. Interested readers may refer to the Appendix
for a brief description of the LSTM, or to Hochreiter
and Schmidhuber (1997) for a detailed explanation of
the method. There are several parameters to be deter
mined when constructing an LSTM network. These
parameters were selected by both heuristic methods
(to limit parameter value ranges) and grid search for
a limited set of parameters. The detailed architecture
and optimal parameters for our LSTM network is
described below:

● LSTM layer with 32 nodes to learn temporal
dependency of the time series.

● A dense layer with 32 nodes to enhance the gen
eralisation level of the model.

● A final dense layer with 11 nodes (equal to the
number of outputs) to predict next values of 10
sensors and overall delays.

● The model is then compiled with an Adaptive
moment estimation optimisation mechanism
(ADAM).

● The loss function during training is the mean
absolute error (MAE) and the metrics function
for model evaluation is the relative mean error.

4. Case study: Pedestrian crowding

4.1. StationSim

We use a simple ABM of pedestrian dynamics
(Malleson et al., 2020) named StationSim as a case
study. The model has been designed to very loosely
represent the behaviour of a crowd of people moving
from an entrance on one side of a rectangular corridor
to an exit on the other side. This is analogous to people
disembarking from a train and moving across the
concourse of a train station. The model environment
is illustrated in Figure 4, with the trajectories of two
interacting agents for illustration.

The model does not attempt to match the beha
vioural realism offered by more developed crowd
models, such as those that adopt the Social Force
model (Helbing et al., 2000). The reason for this sim
plicity is so that: (1) the model can execute relatively
quickly; (2) the probabilistic elements in the model are
limited (we know precisely from where probabilistic
behaviour arises); and (3) the model can be described
fully using a relatively simple state vector.
Importantly, the model can capture the emergence of
crowding. This occurs because each agent has
a different maximum speed that they can travel at, so
fast agents will try to overtake slower ones, but also
because there is a limited space in which agents can
walk and there is a limited rate at which agents can
leave the environment.

Given a rectangular 200 m x 100 m corridor
(Figure 4), N agents are generated as the model initi
alises. We assume that within the simulation time
interval ½0;T�, there are W roughly periodic waves of

Figure 3. A time-series emulator of agent-based models using long short-term memory.

6 M. KIEU ET AL.

arrivals of pedestrians, with some random deviations
δw. We choose W ¼ 3 and these waves start at times
δ1;

1
3 T þ δ2 and 2

3 T þ δ3. This is analogous to multiple
trains arriving at near regular times during the simu
lation time interval. Within each wave, the agents
enter the environment (leave their train) at
a uniform rate through one of the three entrances.
They move across the “concourse” and then leave by
one of the two exits. The entrances and exits have a set
size, such that only a limited number of agents can
pass through them in any given iteration. This config
uration represents a typical problem that ABMs excel
at because it involves the simulation of individuals
with heterogeneous behaviour and with patterns (i.e.,
congestion) that emerge from the interactions
between individuals.

We also assume a set of 10 pedestrian counters are
equally spaced along the corridor, which provide the
number of pedestrians who walk past the sensor (see,
Figure 4). This is a fair assumption in practice because
pedestrian counters are widely available in many pub
lic places. Figure 5 shows the counts at sensors 1, 5 and
10 at each time step from 0 to 1200s. Because of

differences in walking speed between agents and the
emergence of crowding, the counts at each sensor are
very different. At the first sensor near the entrance
(sensor 1), the three waves (i.e., three train arrivals)
are easily identified, with the pedestrians uniformly
leaving the train. These waves are still visible in sensor
5, in the middle of the environment, but model sto
chasticity causes them to be much less clearly defined.
By the time the agents reach sensor 10, at the end of
the corridor, the waves can no longer be easily
distinguished.

Despite being simple, this model has three of the
most important characteristics of an ABM:

– individual heterogeneity: agents have different
maximum travel speeds;

– agent interactions: agents are not allowed to
occupy the same space and try to move around
slower agents who are blocking their path;

– emergence: crowding is an emergent property of
the system that arises as a result of the choice of
exit that each agent is heading to and their max
imum speed.

4.2. Training the ABM emulators

The Training phase starts with the generation of train
ing data. To expose the emulator to a wide range of
possible system behaviours, we randomly generate
multiple sets of agents with random maximum speeds,
starting entrances and desired exits. Experiments are
conducted with populations of N ¼ 100 (few colli
sions and hence largely linear deterministic agent
behaviour) up to N ¼ 500 agents (many collisions,
considerable crowding, large stochasticity). Each set
of parameters is fed into the ABM to generate syn
thetic “historical” aggregated pedestrian counts c and

Figure 5. Counts of pedestrians at sensor 1, 5 and 10 at each time step.

200 m0 50 m

100 m

D
oo

r
in

D
oo

r
ou

t

Pedestrian counters

Figure 4. The stationsim model; adapted from. malleson et al.
(2020).

JOURNAL OF SIMULATION 7

mean delay �d. The mean delay �d is the average of the
difference between the time each agent spent to get
into its current position versus the time that it would
have spent if it could walk with its desired speed, i.e.,

�d ¼
1
N

XN

i¼1
τi �

xi

vi
;

where τi is the time taken by agent i to cross from
where they entered to their current position, xi is the
corresponding straight line distance and vi is agent i’s
desired speed.

This is a useful statistic as it works as a proxy for
the level of crowding, hence the emulator can be
used to predict the emergence of crowding in the
near future.

The simulation is executed 30 times for each popu
lation size, N, by generating new sets of random agents
and re-running the ABM to create a rich synthetic
training dataset. We then split the synthetic data into
training input and training outputs. The training
inputs are the aggregated counts of pedestrians from
each sensor. The training outputs, which the emulator
is tasked with estimating, are the aggregated counts
and mean delay �d at future time steps.

In the Real-time phase we assume that we only
have access to the quasi-real-time aggregated
counts of pedestrians at the 10 sensors along the
corridor on Figure 4. Hence we need an emulator
to use these counts to predict future aggregated
counts and delay. The data are quasi-real-time
because we assume that at the current time step t,
only aggregated counts at previous time steps t � L
to t � 1 are available. The trained emulators pro
cess these inputs to predict the aggregated counts
and delay at the current time step t and near-future
time steps, the forecast period, t þ k, for k> 0. At
the next time step t þ 1, we assume that the data
recorded by the sensors at time t are now available
and can be used to predict the next time steps in
the near future.

5. Numerical experiments

This section describes the experimental setup and
results. Following the framework described in
Section 3, recall that the emulators are trained using
a synthetic “historical” dataset of 30 replications from
StationSim, with varying agent population sizes. The
emulators’ predictive ability will now be evaluated
using another synthetic “real-time” dataset that is
completely unseen to them and created by running
StationSim once. This provides “pseudo-truth” aggre
gated pedestrian counts and delays. We evaluate the
two classes of emulator for ABM with two
experiments:

(1) The total pedestrian population is known: the
emulators are trained and evaluated using data
sets with the same population size. For
instance, the performance of a regression emu
lator that has been trained using the population
data of N ¼ 500 agents will be evaluated against
a pseudo-truth “real time” dataset with 500
agents.

(2) The total pedestrian population is unknown:
the emulators are trained once with all the
training data available (with populations sizes
N 2 f100; 200; 300; 400; 500g) and evaluated
separately on “real-time” data with different
population sizes. For instance, a regression
emulator that has been trained using all avail
able population data will be evaluated 5 times,
using “real time” data for population sizes
N 2 f100; 200; 300; 400; 500g. An emulator
that generalises well will be able to estimate
the counts at each gate and the mean delay
without knowing the size of the population.
This experiment is more practical because in
reality the total pedestrian is often unknown in
real-time.

5.1. Experiment 1: Known pedestrian population
size

In the first experiment, we assume that the total number
of pedestrians that will walk through the corridor is
known. We evaluate the accuracy of each class of emu
lator when the pedestrian population is N 2
f100; 200; 300; 400; 500g pedestrians. Figure 6 shows
the prediction of the aggregated pedestrian counts at
each sensor during the study period using the regres
sion emulator and the time-series emulator for the case
where the forecast period is k ¼ 5 and k ¼ 15 time
steps into the future. The red lines show the predicted
counts at each sensor and each time step, whereas the
black lines show the pseudo-truth real-time counts.

Similarly, Figure 7 shows the prediction results
from the time-series emulator.

The two figures illustrate the predicted counts (in
red) and the synthetic real-time counts (in black) from
each sensor and across time. In Figures 6 and 7, the
evaluated pedestrian population is 500.

Overall, both of the emulators perform very well in
the prediction of aggregated counts. The overall fluc
tuations of the aggregated pedestrian counts are cap
tured closely with a few exceptions where the synthetic
real-time counts (black line) reach a peak. In both
classes of emulators, the further prediction (k ¼ 15)
has slightly lower accuracy. Figures 6 and 7 clearly
show that the emulators have enabled us to work
with aggregated data to produce outputs that are simi
lar to those produced by the ABM.

8 M. KIEU ET AL.

Figures 8 and 9 show the prediction of mean pedes
trian delays (a proxy for crowding) in the study corri
dor for the regression and time-series emulators
respectively. The figures show the predicted

delays (in red) versus the synthetic real-time delays
(in black) when the agent population is N 2
f100; 200; 300; 400; 500g and the simulation time is
T ¼ 1200. The figures clearly show that the delays

Figure 6. Prediction of pedestrian counts at each sensor using the regression emulator. red line: predicted counts, black line:
synthetic real-time counts.

Figure 7. Prediction of pedestrian counts at each sensor using the time-series emulator. red line: predicted counts, black line:
synthetic real-time counts.

JOURNAL OF SIMULATION 9

increase significantly as the agent population
increases. The delay is clearly correlated with the
three waves of pedestrian arrivals, with a sudden
drop in delay after each wave. Predicting these waves
of delay is challenging because of this sudden drop and
because the location, the peak and the steepness of
each curve is stochastic.

Both emulators capture the general trend in the
mean delay reasonably well. The performances are
lower than the prediction for aggregated pedestrian
counts because the emulators cannot capture some of
the peaks and troughs in the values of mean delay. This
can be explained by the lack of the historical values of
delay in the input, as mentioned in Section 4. The

Figure 8. Prediction of delays using the regression emulator. red line: predicted delay, black line: synthetic real-time delay.

figure 9. Prediction of delays using the time-series emulator. red line: predicted delay, black line: synthetic real-time delay.

10 M. KIEU ET AL.

regression emulator (Figure 8) shows noticeably more
fluctuations in its prediction than the time-series emu
lator (Figure 9), with several cases of large prediction
errors. It shows that the regression emulator is less
reliable in its prediction compared to the time-series
prediction. We further illustrate this point in Figure 10,
which shows the difference between the predicted
mean delay with the synthetic real-time mean delay
for the case where the forecast period is k ¼ 5, and
the agent population is 100 and 200. The closer the
lines are to zero, the better the prediction. The residuals
from the regression emulator are more volatile, indicat
ing that the regression emulator is a less stable predic
tion compared to the time-series emulator.

Table 1 shows the comparison of prediction accu
racy between the regression emulator (RF) and the
time-series emulator (LSTM). The comparison values
are of the Mean Squared Error (MSE),

MSE ¼
1
T

XT

t¼1
ð�dt � d̂tÞ

2
; (2)

where �dt is the synthetic real-time mean delay at time
t, and d̂t is the predicted mean delay at time t. The
predictions in Table 1 are made for forecast periods

k 2 f5; 10; 15g. The numbers on the time-series emu
lator are showed in bold if the MSE is lower than its
regression counterpart, and vice-versa. The time-
series emulator has a better accuracy compared to
the regression emulator, by 13.16% on average.

5.2. Experiment 2: Unknown pedestrian
population

The next experiment assumes that in real-time the
total number of pedestrians who will enter the
system is unknown, so only the aggregated counts
at each sensor are available to the emulators. This
is much closer to the situation that would arise in
reality. The framework is exactly the same as the
previous experiment, apart from the fact that now
the training input data of all agent population sizes
N 2 f100; 200; 300; 400; 500g are fed into the emu
lators for training. The trained emulators are then
evaluated against five different sets of “real time”
data, one created for each of the five different
population sizes, to see how well they can predict
different crowd sizes.

Using the regression and time-series emulators,
we found that predictions of pedestrian counts are
very similar to previous experiments (e.g., when
compared to the results in Figures 6 and 7). To
better differentiate the results, Figure 11 shows
a heat map of the Mean Absolute Error of the
predictions of aggregated pedestrian counts using
the regression emulator (on the top row) and the
time-series emulator (on the bottom row) when the
emulators know the pedestrian population (on the
left) and with an unknown population (all the data
are used, on the right). All the tests are done for the

Figure 10. Comparison between the prediction errors from regression versus time-series emulators.

Table 1. Comparison of prediction accuracy (MSE) for
Experiment 1. The bold number shows the lower error when
comparing the regression to the time-series emulator.

Regression emulator Time-series emulator

Population 5s 10s 15s 5s 10s 15s

100 18.21 20.82 21.02 15.12 17.37 22.25
200 22.09 20.72 21.53 17.14 15.38 18.72
300 23.05 23.59 23.83 23.26 23.78 21.93
400 21.37 23.03 25.36 18.75 16.78 20.11
500 24.06 26.32 29.51 23.16 20.36 24.86

JOURNAL OF SIMULATION 11

forecast period k ¼ 15. The lighter colour illustrates
better prediction accuracy. Three distinct patterns
are visible:

● First, the prediction accuracy is better with smal
ler agent populations. This is expected because
with fewer agents there are fewer collisions, so the
behaviour of the agents is nearly deterministic.

● Second, the time-series emulator shows better pre
diction accuracy (lighter colours on Figure 11)
especially at higher agent populations (400 and
500 agents). The regression emulator performs
worse at the first sensor (Sensor 0), because it
does not take into consideration the historical
counts. When the train has not yet arrived and
there are no pedestrians in the corridor, the

Figure 11. Comparison of the prediction results for aggregated pedestrian counts at each sensor.

Figure 12. Experiment 2: prediction of delays using the regression emulator. red line: predicted delay, black line: synthetic real-time
delay.

12 M. KIEU ET AL.

emulators still make a prediction based on histor
ical patterns that some pedestrians should be in the
corridor. The time-series emulator partly solves
this problem by including more data from the
near past time steps, as illustrated in Figure 11.

● Third, there are no significant differences in
terms of prediction accuracy between the
known and the unknown pedestrian population
scenario (the colours are very similar from the
left to the right of Figure 11) apart from a few
occasions when the emulators perform slightly
better when the pedestrian population is known.
This pattern can be seen near Sensor 0, where
differences in pedestrian demand are really
important.

We will now look at the prediction of mean
pedestrian delay in Figures 12 and 13. Both emu
lators capture the trends in mean delay, with com
parable results to those of the Experiment 1 (see,
Figures 8 and 9).

Table 2 compares the emulators in more detail.
Again, we see that the prediction accuracy from the
time-series emulator is significantly better than the
regression emulator in all tests, by 22.1% on average.
The time-series emulator is noticeably better in
Experiment 2 – when the emulator has to generalise
to make prediction – as the number of pedestrian is not
observed. The LSTM takes advantage of the historical
pedestrian counts from the last 5 time steps to predict
much more accurately than the regression emulator.

Figure 14 shows a heat map of the Mean Absolute
Error of the predictions of delay using the regression
emulator (left two columns) and the time-series emu
lator (right two columns) when the emulators know the
pedestrian population and with unknown population.

figure 13. Experiment 2: prediction of delays using the time-series emulator. red line: predicted delay, black line: synthetic real-time
delay.

Table 2. Comparison of prediction accuracy: experiment 2.
Regression emulator Time-series emulator

Population 5s 10s 15s 5s 10s 15s

100 23.58 23.50 25.14 16.09 16.44 16.97
200 29.13 29.59 30.43 16.43 17.14 18.95
300 26.68 26.00 26.70 21.12 21.65 22.98
400 21.25 23.61 24.95 21.14 18.51 20.14
500 32.30 35.38 33.85 30.77 30.34 33.17

Figure 14. Comparison of the prediction results for delay.
r-unknown: regression emulator predicts unknown population,
r-known: regression emulator predict known population, ts-
unknown: time-series emulator predicts unknown population,
ts-known: time-series emulator predicts known population.

JOURNAL OF SIMULATION 13

All the tests are done when the forecast period is
k ¼ 15. The lighter colour illustrates better prediction
accuracy. Two patterns are visible:

– Similar to the prediction of counts, the prediction
accuracy is better with smaller agent populations.
The time-series emulators outperform the regres
sion emulator counterparts.

– There is now a distinct difference between the pre
diction accuracy of delay when the population is
known, versus when the population is known.
Models with known populations perform much
better.

6. Discussion and conclusion

6.1. Summary

This paper proposes a new framework that enables
ABM researchers and practitioners to benefit from
emulators to make predictions based on ABMs in real-
time. The framework, as outlined in Figure 1, allows
emulators to learn from the outputs of an ABM to
achieve two major points. First, the emulators enable
a real-time prediction using a fraction of the computa
tion time required when compared to using the ABM to
make predictions. We test two classes of emulators:
a random forest regression and a time-series model.
While they both need to be trained using the data
generated from the ABM, which is an expensive pro
cess, they can provide predictions of pedestrian counts
and mean delay. Second, the emulators enable us to
predict directly from aggregated data (i.e., counts from
each sensor), instead of relying on individual-level data.
This is especially important if individual data are not
available in real-time due to technical or privacy chal
lenges, which is extremely common in practice.

Both emulators perform well at predicting aggre
gated pedestrian counts and mean delay for both
Experiment 1 and 2. Between the two emulators, the
time-series model performs slightly better in
Experiment 1 (when the number of pedestrians is
observed) and significantly better in Experiment 2
(when the number of pedestrians is unknown).
Experiment 2 is more practical, showing the greater
generalisability of the time-series emulator, as in prac
tice the number of pedestrians entering the environ
ment (i.e., travellers on a train) may be unknown. The
time-series emulator generally takes more time to
train, but takes less time to make a prediction. This
is because the regression emulator needs 11 individual
Random Forests to predict the q ¼ 11 values of the
output variable at each time step, while we need only
one time-series model to make predictions for the
same output. Therefore, the time-series emulator is
more feasible to use in practice.

6.2. Caveats

This paper has focused on developing the framework
and evaluating it using synthetic data. Although we
have shown that the framework enables us to use
emulators to predict the output of ABMs in real-time,
a limitation of this paper is the lack of real data in the
evaluation. The identical twin experimental framework
has advantages in that it allows us to accurately calcu
late error because the “truth” is known, but it is limited
in that the pseudo-truth data might not be as rich as
data derived from a real system. In addition, we assume
that the ABM that is used to train the emulator is able
to adequately capture the dynamics of the target sys
tem. If the ABM is not able to model the target ade
quately – e.g., due to a lack of accurate observational
data or unknown behavioural parameters – then the
emulator will not be able to reliably make predictions
about the real system. Future research directions
include the use of real data for a pedestrian system,
which would allow the same framework to be used with
the only difference being that the ABM should be first
calibrated to the real-world observations.

One of the advantages of the proposed framework is
that the most computationally-intensive part – running
the ABM a large number of times to generate training
data for the emulators – can be conducted offline in
advance. However, it is important to note that for larger,
more complex agent-based models, the time taken for
them to execute, and the amount of data they generate,
might become problematic. One solution to this problem
would be to adapt the framework so that the creation of
synthetic data and the training of the emulators could
take place simultaneously, rather than creating all of the
synthetic data in one step, and then training the emula
tors in the next. Whilst this does not solve the problems
associated with computationally-expensive ABMs, it sig
nificantly reduces the amount of data storage required –
once a model result has been incorporated into the
emulator it can be discarded – and reduces the extra
time that would be required to train the emulator after
the ABM has finished running.

7. Conclusion

This paper proposes a new framework to enable real-
time agent-based modelling through the use of emu
lators. Experiments with a regression emulator and
a time-series emulator suggest that the time-series
emulator proves to generalise better to cases where
the number of agents in the system is not known
a priori. The results have implications for the real-
time modelling of human crowds, suggesting that
emulation is a feasible approach to modelling crowds
in real-time, where computational complexity prohi
bits the use of an ABM directly.

14 M. KIEU ET AL.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme [grant
agreement No. 757455].

ORCID

Minh Kieu http://orcid.org/0000-0001-7798-6195
Hoang Nguyen http://orcid.org/0000-0002-1489-0142
Jonathan A. Ward http://orcid.org/0000-0002-2469-7768
Nick Malleson http://orcid.org/0000-0002-6977-0615

References

Baker, E., Challenor, P., & Eames, M. (2019). Diagnostics for
stochastic Gaussian process emulators. arXiv:1902.01289
[stat.ME]. https://arxiv.org/abs/1902.01289

Balmer, M., Rieser, M., Meister, K., Charypar, D.,
Lefebvre, N., & Nagel, K. (2009). Matsim-t:
Architecture and simulation times. In A. Bazzan & F.
Klügl(Eds.), Multi-agent systems for traffic and transpor
tation engineering (pp. 57–78). IGI Global.

Barnes, C. M., Ghouri, A., & Lewis, P. R. (2021). Explaining
evolutionary agent-based models via principled
simplification. Artificial Life, 27(3–4), 143–163. https://
doi.org/10.1162/artl_a_00339

Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for
Gaussian process emulators. Technometrics, 51(4),
425–438. https://doi.org/10.1198/TECH.2009.08019

Bijak, J., Hilton, J., Silverman, E., & Cao, V. D. (2013). From
agent-based models to statistical emulators. Joint Eurostat/
UNECE Work Session On Demographic Projections (pp. 12).

Bonabeau, E. (2002). Agent based modeling: Methods and
techniques for simulating human systems. Proceedings of
the National Academy of Sciences, 99(90003), 7280–7287.
https://doi.org/10.1073/pnas.082080899

Breiman, L. (2001). Random forests. Machine Learning, 45
(1), 5–32. https://doi.org/10.1023/A:1010933404324

Clay, R., Kieu, L.-M., Ward, J. A., Heppenstall, A., &
Malleson, N. (2020). Advances in practical applications
of agents, multi-agent systems, and trustworthiness.The
PAAMS collection. In Y. Demazeau, T. Holvoet,
J. M. Corchado, & S. Costantini (Eds.), Towards realtime
crowd simulation under uncertainty using an agent-based
model and an unscented Kalman filter (Vol. 12092, pp.
68–79). Springer.

Conti, S., Gosling, J. P., Oakley, J. E., & O’Hagan, A. (2009).
Gaussian process emulation of dynamic computer codes.
Biometrika, 96(3), 663–676. https://doi.org/10.1093/bio
met/asp028

Conti, S., & O’Hagan, A. (2010). Bayesian emulation of
complex multi-output and dynamic computer models.
Journal of Statistical Planning and Inference, 140(3),
640–651. https://doi.org/10.1016/j.jspi.2009.08.006

Deissenberg, C., Van Der Hoog, S., & Dawid, H. (2008).
Eurace: A massively parallel agent-based model of the
European economy. Applied Mathematics and
Computation, 204(2), 541–552. https://doi.org/10.1016/j.
amc.2008.05.116

Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E.
(2018). The effects of labour market reforms upon unem
ployment and income inequalities: An agent-based
model. Socio-Economic Review, 16(4), 687–720. https://
doi.org/10.1093/ser/mwx054

Farah, M., Birrell, P., Conti, S., & Angelis, D. D. (2014).
Bayesian emulation and calibration of a dynamic epi
demic model for A/H1n1 influenza. Journal of the
American Statistical Association, 109(508), 1398–1411.
https://doi.org/10.1080/01621459.2014.934453

Heard, D. (2014). Statistical inference utilizing agent based
models [PhD thesis]. Duke University.

Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating
dynamical features of escape panic. Nature, 407(6803),
487. https://doi.org/10.1038/35035023

Henein, C. M., & White, T. (2005). Agent-based modelling
of forces in crowds. In P. Davidsson, B. Logan, &
K. Takadama (Eds.), Multi-agent and multi-agent-based
simulation (pp. 173–184). Springer.

Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008).
Computer model calibration using high-dimensional
output. Journal of the American Statistical Association,
1 0 3 (4 8 2) , 5 7 0 – 5 8 3 . h t t p s : / / d o i . o r g / 1 0 . 1 1 9 8 /
016214507000000888

Hilton, J. (2017). Managing uncertainty in agent-based demo
graphic models [PhD thesis]. University of Southam- ton

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780. https://
doi.org/10.1162/neco.1997.9.8.1735

Kieu, L.-M., Malleson, N., & Heppenstall, A. (2020). Dealing
with uncertainty in agent-based models for short- term
predictions. Royal Soc Ety Open Science, 7(1), 191074.
https://doi.org/10.1098/rsos.191074

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., &
Chalikov, D. V. (2005). New approach to calculation of
atmospheric model physics: Accurate and fast neural net
work emulation of longwave radiation in a climate model.
Monthly Weather Review, 133(5), 1370–1383. https://doi.
org/10.1175/MWR2923.1

Lafuerza, L. F., Dyson, L., Edmonds, B., & McKane, A. J.
(2016a). Simplification and analysis of a model of
social interaction in voting. The European Physical
Journal. B, 89(7), 159. https://doi.org/10.1140/epjb/
e2016-70062-2

Lafuerza, L. F., Dyson, L., Edmonds, B., & McKane, A. J.
(2016b). Staged models for interdisciplinary research.
PloS one, 11(6), e0157261. https://doi.org/10.1371/jour
nal.pone.0157261

Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A.,
& Heppenstall, A. (2020). Simulating crowds in real time
with agent-based modelling and a particle filter. Journal
of Artificial Societies and Social Simulation, 23(3), 3.
https://doi.org/10.18564/jasss.4266

Moutoussamy, V., Nanty, S., & Pauwels, B. (2015).
Emulators for stochastic simulation codes. ESAIM:
Proceedings and Surveys, 48 , 116–155. https://doi.org/
10.1051/proc/201448005

Niemann, J.-H., Winkelmann, S., Wolf, S., & Schütte, C.
(2021). Agent-based modeling: Population limits and
large timescales. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 31(3), 033140. https://doi.org/10.
1063/5.0031373

Oakley, J., & O’Hagan, A. (2002). Bayesian inference for the
uncertainty distribution of computer model outputs.
Biometrika, 89(4), 769–784. https://doi.org/10.1093/bio
met/89.4.769

JOURNAL OF SIMULATION 15

https://arxiv.org/abs/1902.01289
https://doi.org/10.1162/artl_a_00339
https://doi.org/10.1162/artl_a_00339
https://doi.org/10.1198/TECH.2009.08019
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/biomet/asp028
https://doi.org/10.1093/biomet/asp028
https://doi.org/10.1016/j.jspi.2009.08.006
https://doi.org/10.1016/j.amc.2008.05.116
https://doi.org/10.1016/j.amc.2008.05.116
https://doi.org/10.1093/ser/mwx054
https://doi.org/10.1093/ser/mwx054
https://doi.org/10.1080/01621459.2014.934453
https://doi.org/10.1038/35035023
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1198/016214507000000888
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1098/rsos.191074
https://doi.org/10.1175/MWR2923.1
https://doi.org/10.1175/MWR2923.1
https://doi.org/10.1140/epjb/e2016-70062-2
https://doi.org/10.1140/epjb/e2016-70062-2
https://doi.org/10.1371/journal.pone.0157261
https://doi.org/10.1371/journal.pone.0157261
https://doi.org/10.18564/jasss.4266
https://doi.org/10.1051/proc/201448005
https://doi.org/10.1051/proc/201448005
https://doi.org/10.1063/5.0031373
https://doi.org/10.1063/5.0031373
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1093/biomet/89.4.769

Oyebamiji, O. K., Wilkinson, D. J., Jayathilake, P. G.,
Curtis, T. P., Rushton, S. P., Li, B., & Gupta, P. (2017).
Gaussian process emulation of an individual-based model
simulation of microbial communities. Journal of Com
Putational Science, 22, 69–84. https://doi.org/10.1016/j.
jocs.2017.08.006

Oyebamiji, O. K., Wilkinson, D. J., Li, B.,
Jayathilake, P. G., Zuliani, P., & Curtis, T. P. (2019).
Bayesian emulation and calibration of an
individual-based model of microbial communities.
Journal of Computational Science, 30, 194–208. https://
doi.org/10.1016/j.jocs.2018.12.007

Rasouli, S., & Timmermans, H. (2013). Using emulators
to approximate predicted performance indicators of
complex microsimulation and multiagent models of
travel demand. Transportation Letters, 5(2), 96–103.
https://doi.org/10.1179/1942786713Z.0000000008

Rhodes, D. M., Holcombe, M., & Qwarnstrom, E. E. (2016).
Reducing complexity in an agent based reaction model—
benefits and limitations of simplifications in relation to
run time and system level output. Biosystems, 147, 21–27.
https://doi.org/10.1016/j.biosystems.2016.06.002

Schoenharl, T., & Madey, G. (2011). Design and implemen
tation of an agent-based simulation for emergency
response and crisis management. Journal of Algorithms
& Computational Technology, 5(4), 601–622. https://doi.
org/10.1260/1748-3018.5.4.601

Shrestha, D. L., Kayastha, N., & Solomatine, D. P. (2009).
A novel approach to parameter uncertainty analysis of
hydrological models using neural networks. Hydrology
and Earth System Sciences, 13(7), 1235–1248. https://doi.
org/10.5194/hess-13-1235-2009

Swarup, S., & Mortveit, H. S. (2020). Live simulations.
Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent. Systems, AAMAS
’20, Auckland, New Zealand. (pp. 1721–1725).
International Foundation for Autonomous Agents and
Multiagent Systems.

Tregubov, A., & Blythe, J. (2020). Optimization of
large-scale agent-based simulations through auto
mated abstraction and simplification. International
Workshop on Multi-Agent Systems and Agent-Based
Simulation, Auckland, New Zealand. (pp. 81–93).
Springer.

Wang, M., & Hu, X. (2015). Data assimilation in agent
based simulation of smart environments using parti
cle filters. Simulation Modelling Practice and Theory,
56(56), 36–54. https://doi.org/10.1016/j.simpat.2015.
05.001

Zhou, B., Wang, X., & Tang, X. (2012). Understanding
collective crowd behaviors: Learning a mixture model of
dynamic pedestrian-agents In 2012 IEEE Conference on
Computer Vision and Pattern Recognition (pp. 2871–
2878), Providence, RI: IEEE.

16 M. KIEU ET AL.

https://doi.org/10.1016/j.jocs.2017.08.006
https://doi.org/10.1016/j.jocs.2017.08.006
https://doi.org/10.1016/j.jocs.2018.12.007
https://doi.org/10.1016/j.jocs.2018.12.007
https://doi.org/10.1179/1942786713Z.0000000008
https://doi.org/10.1016/j.biosystems.2016.06.002
https://doi.org/10.1260/1748-3018.5.4.601
https://doi.org/10.1260/1748-3018.5.4.601
https://doi.org/10.5194/hess-13-1235-2009
https://doi.org/10.5194/hess-13-1235-2009
https://doi.org/10.1016/j.simpat.2015.05.001
https://doi.org/10.1016/j.simpat.2015.05.001

Appendix. Long Short-term Memory

This appendix briefly describes the Long Short-term
Memory (LSTM), a recurrent neural network (RNN).
The RNN was first introduced where a loop connection
is added to each unit along a sequence (e.g., organised by
timestamps) mikolov2010recurrent. A hidden vector h is
maintained in the RNN, which is updated at time stamp
t via

ht ¼ tanhðW � ht� 1 þ I � xtÞ (A1)

where W is the recurrent weight matrix and I is a projection
matrix. Then a prediction will be made based on the hidden
state h via

yt ¼ softmaxðW � ht� 1Þ; (A2)

where the function softmax provides a normalised probabil
ity distribution over the possible classes. By using h as the
input to another RNN, we can stack RNNs, creating deeper
architectures pascanu2013construct, i.e.,

hl
t ¼ σðW � hl

t� 1 þ I � hl� 1
t Þ: (A3)

As a consequence, an RNN can be considered as multiple
repetitions of the same structure, where each is connected to
the successor. The internal design of an RNN layer with
compatible unrolled network is presented in Figure A1.

A chunk of neural network M takes some input Xt and
outputs a value ht . The RNN architecture can be seen as
multiple copies of the same network M, each transmit
ting a message to a successor, as also illustrated in Figure
A1.

The RNN architecture can record the information for
a few previous timestamps. However, while RNN outper
forms ANN in modelling the temporal dependency between
sequences, the RNN has the problem of long-term depen
dency. Instead of having a “memory” to store the informa
tion, RNN simply carries the information forward and
updates it in every time step sak2014long. In other words,

RNN only uses recent information to perform the present
task, which is not ideal for dealing with time-series
prediction.

This shortcoming is addressed by the Long Short-
Term Memory (LSTM) network hochreiter 1997 long,
which is an extended RNN architecture capable of
learning long-term dependencies. LSTM carries the
information forward through multiple time steps as
a long-term memory. It has a similar chain architecture
as in the RNN but the repeating modules have a special
internal design. An RNN module only has single neural
network layer (e.g., tanh layer) while there are four
different interacting layers inside a LSTM module.
Figure A2 illustrates a standard LSTM with four inter
acting layers.

At each time stamp, a hidden vector h and a memory
vector m is maintained by the LSTM, which are responsible
for controlling state updates and outputs.

The information to be “forgotten” when passing through
a gate is controlled by the forget function ft ,

f t ¼ σðWf � ½ht� 1; xt� þ bf Þ: (A4)

There are two steps which control the information to be
carried in the cell state. Firstly, a sigmoid layer called the
“input gate layer”,

it ¼ σðWi � ½ht� 1; xt� þ biÞ; (A5)

decides which values are to be updated. Next, a vector of
new candidate values is generated by a tanh layer,

~Ct � tanhðWc � ½ht� 1; xt� þ bcÞ; (A6)

that could be added to the state.
The current cell state ~Ct will be updated by multiplying

the forget function ft with the old state, then combining with
it � ~Ct , i.e.,

Ct ¼ f t � Ct� 1 þ it � ~Ct: (A7)

Finally, the output of a cell state is decided by

Figure A1. RNN and unrolled RNN.

JOURNAL OF SIMULATION 17

ot ¼ σðWo � ½ht� 1; xt� þ boÞ (A8)

and

ht ¼ ot � tanh ðCtÞ; (A9)

where σ is the sigmoid function, Wf ;Wi;WC;Wo are recur
rent weight matrices and bf ; bi; bC; bo are projection
matrices.

Besides different module structure, the key factor in
the LSTM is the connection line (on the top of the
diagram) running through the entire architecture with

only simple linear combinations. This connection
allows long-term information to flow smoothly along
the sequences. Each cell state in a LSTM is able to
control the amount of information allowed to pass
through the cell using the regulated elements called
gates. A sigmoid layer under a point-wise multiplica
tion operation will make up a gate and a LSTM has
three of them. Because a sigmoid layer outputs num
bers between zero and one, the amount of information
passing through a gate can range from “nothing” to
“everything”.

Figure A2. A standard LSTM module with four interacting layers.fv

18 M. KIEU ET AL.

	Abstract
	1. Introduction
	2. Literature review
	2.1. Analytical emulators
	2.2. Meta-modelling approaches
	2.3. Emulators of ABMs

	3. Methodology
	3.1. Regression emulator: Random forest
	3.2. Time-series emulator: Long short-term memory

	4. Case study: Pedestrian crowding
	4.1. StationSim
	4.2. Training the ABM emulators

	5. Numerical experiments
	5.1. Experiment 1: Known pedestrian population size
	5.2. Experiment 2: Unknown pedestrian population

	6. Discussion and conclusion
	6.1. Summary
	6.2. Caveats

	7. Conclusion
	Disclosure statement
	Funding
	ORCID
	References
	Appendix. Long Short-term Memory

