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ABSTRACT
The use of Agent-Based Models (ABMs) to make predictions in real-time is hindered by their 
high computation cost and the lack of detailed individual data. This paper proposes a new 
framework to enable the use of emulators, also referred to as surrogate models or meta- 
models, coupled with ABMs, to allow for real-time predictions of the behaviour of a complex 
system. The case study is that of pedestrian movements through an environment. We evaluate 
two different types of emulators: a regression emulator based on a Random Forest and a time- 
series emulator using a Long Short-Term Memory neural network. Both emulators perform 
well, but the time-series emulator proves to generalise better to cases where the number of 
agents in the system is not known a priori. The results have implications for the real-time 
modelling of human crowds, suggesting that emulation is a feasible approach to modelling 
crowds in real-time, where computational complexity prohibits the use of an ABM directly.
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1. Introduction

Agent-based modelling is a class of computer simula
tion that excels in its ability to simulate complex 
systems (Bonabeau, 2002). Instead of deriving aggre
gated equations of system dynamics, agent-based 
models (ABMs) encapsulate system-wide characteris
tics from the behaviours and interactions of individual 
agents, for instance, humans, animals or vehicles. 
ABMs have traditionally been used to understand the 
dynamics of a system in a wide variety of contexts, 
such as delays in urban traffic (Balmer et al., 2009) and 
emergency evacuations (Schoenharl & Madey, 2011).

However, the use of ABMs to analyse systems is not 
usually possible in real-time. For example, ABMs are 
ideally suited to simulating crowds of people (Henein & 
White, 2005), but such models are currently con
strained to “offline” use and cannot inform the manage
ment of busy places in real-time. It is, in fact, very 
challenging to develop real-time ABMs (Swarup & 
Mortveit, 2020) because there are serious methodologi
cal issues associated with updating agent-based models 
in response to new data that need to be overcome (Clay 
et al., 2020). In addition, even relatively simple ABMs 
can become extremely computationally intensive as the 
number of agents increases, which poses technical chal
lenges as simulation results are required rapidly to be 
useful for the real-time management of systems. 
Existing studies report a drastic increase (sometimes 
exponential) in computation time as the population of 
agents increases in size (Niemann et al., 2021).

It is also often impractical, from a data perspective, to 
implement a 1-to-1 simulation of a human system in 
real-time. Most crowd data are aggregated in the first 
place – e.g., those created through the use of footfalls 
sensors or pedestrian counters – and the introduction of 
regulations such as the General Data Protection 
Regulation (GDPR) and the California Consumer 
Privacy Act make it more difficult to capture individual- 
level data and hence for modellers to model a real person 
and their intentions in a human system. Aggregated data 
can be easily handled by statistical and machine learning 
models for real-time purposes, but these approaches face 
two challenges. Firstly, statistical models are often purely 
data-driven and cannot provide additional outputs that 
are important in understanding the inherent system 
dynamics, as ABMs can do. For instance, machine learn
ing models can learn to predict future aggregate esti
mates, such as future footfall counts, but cannot 
provide additional processed outputs such as delays or 
pedestrian density, which are provided when using an 
ABM to simulate the system from the “bottom up”. 
Secondly, it can be very difficult to obtain the substantial 
volume of data required to train a versatile statistical 
model. Even if data are collected over a long period, 
some system states may never be observed, and 
a statistical model will struggle to make out-of-sample 
predictions in these cases.

This leads us to the core idea of this paper. Rather 
than attempting to use ABMs directly to conduct 
real-time analyses, we use the explanatory power 
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and flexibility of ABMs to empower another model 
that can be used in real-time for prediction and 
management purposes. The ABM can be used to 
simulate the complex system, then in real-time 
another model, that can make faster predictions, 
can be used to represent the ABM. Hence this 
paper aims to develop an emulators framework, also 
referred to as surrogate models or meta-models that 
provides a mapping between some aggregated data 
(that we assume are available in real-time) and out
puts from an ABM. In effect, an ABM is used offline 
to create a large volume of data to train an emulator, 
and the trained emulator can then use real-world 
aggregate data to make future predictions in real- 
time. We also compare two main types of emulators: 
a regression and a time-series emulator to find out 
which one is more suitable to make predictions in 
real-time.

The remainder of this manuscript is structured as 
follows. Section 2 reviews the literature on emulators 
for computer codes in general and ABMs specifically. 
Section 3 outlines the ABM and emulation methods 
developed in this research. Section 5 describes the 
results of several numerical case studies that compare 
the performance of the two emulators considered. 
Finally, Section 6 concludes and suggests several direc
tions for future research. The source codes for the 
ABM, as well as the emulators can be found at [TBA 
link to our Github].

2. Literature review

An emulator is a statistical representation of 
a simulator, where the simulator itself is considered 
an unknown function (Bastos & O’Hagan, 2009). The 
emulator attempts to depict the relationship between 
the input and output variables of the simulator 
(Rasouli & Timmermans, 2013), ideally producing 
output much more efficiently than the simulator. 
This section reviews the existing approaches to build
ing emulators for complex simulators, including 
ABMs. The emulator is a fundamental concept in the 
physical sciences, commonly used in fields such as 
climate modelling (Krasnopolsky et al., 2005) and 
biogeochemistry (Conti & O’Hagan, 2010) where 
simulation models are often too costly for real-time 
implementation. Recent efforts have shown the bene
fits of emulators for complex (Krasnopolsky et al., 
2005; Rasouli & Timmermans, 2013), dynamic 
(Conti et al., 2009; Conti & O’Hagan, 2010) and sto
chastic (Baker et al., 2019; Moutoussamy et al., 2015) 
simulation models. Despite this enthusiasm, there 
have been a limited number of attempts at emulating 
ABMs (Bijak et al., 2013; Heard, 2014; Hilton, 2017; 
Oyebamiji et al., 2017; Rasouli & Timmermans, 2013), 
let alone real-time ABMs. This section reviews emula
tors and emulators for ABMs in more detail.

2.1. Analytical emulators

Analytical emulators aim to find a tractable, para
metric smoothing function depicting the relationship 
between input and output variables. Rasouli and 
Timmermans (2013) aims to emulate the daily dis
tance travelled per person in a microsimulation 
model and an ABM of traffic flow. A regression 
model with main effects plus first-order interaction 
effects was developed. The authors also explored the 
impact of the number of simulation runs on the per
formance of the emulator, with the results suggesting 
that the accuracy of the emulator increases with the 
number of simulation runs. However, this paper only 
aims to develop a direct statistical mapping between 
inputs and outputs, without capturing the dynamic 
changes in the system. Lafuerza et al. (2016a) devel
oped an analytically tractable emulator of an ABM of 
social interaction, which allows mathematical analysis 
to be performed. Emulators such as these are analyti
cally tractable with an elegant parametric formulation 
that can help to elucidate the relationship between 
input and output variables. However, they are often 
limited to the instantaneous dynamics of the system 
where the analytical formulations are developed, and 
will need to be revised as the system under study 
changes over time. Revising the analytical formula
tions of these emulators is a complex and time- 
consuming task, that would limit the usefulness of 
analytical emulators for real-time applications.

2.2. Meta-modelling approaches

Meta-modelling emulators use statistical or machine 
learning techniques to learn the mapping between the 
input and output variables of a simulator. These are 
more flexible than analytical emulators because the 
same technique can be implemented to “retrain” the 
emulator if updates are needed, instead of revising the 
emulator itself. Meta-modelling emulators can learn 
complex behaviours, making them more widely 
applicable than analytical approaches.

Gaussian Process (GP) emulators (also referred to 
as Kriging) are among the most popular emulator 
techniques (Bastos & O’Hagan, 2009). GP emulators 
have been developed for univariate (Oakley & 
O’Hagan, 2002) and multivariate (Higdon et al., 
2008) problems, as well as dynamic (Conti et al., 
2009; Conti & O’Hagan, 2010) and stochastic (Baker 
et al., 2019; Moutoussamy et al., 2015) simulators. 
However, the complexity of parameter inference for 
a GP is usually Oðn3Þ, which means that it is actually 
very expensive to train and adapt a GP emulator of 
a high-dimension simulator such as an ABM. Other 
machine learning techniques for emulators, such as 
Neural and Bayesian Networks (Farah et al., 2014; 
Shrestha et al., 2009), have also been explored. 
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Machine learning methods are generally even more 
flexible than Gaussian Processes, take less time to 
train and, most importantly, they excel at providing 
a non-linear mapping between the input and output 
variables of the simulator. These features make them 
strong candidates for emulating a real-time simulator.

2.3. Emulators of ABMs

The main difference between emulators of ABMs and 
emulators of other simulation models is that ABMs are 
fundamentally driven by the micro-interactions of 
discrete entities (“agents”). This allows models with 
even relatively simple behavioural rules to produce 
complex outcomes. Many emulators of ABMs attempt 
to re-produce similar dynamics by simplifying the 
ABM itself, e.g., by reducing the number of agents or 
simplifying their behaviour (Barnes et al., 2021; 
Deissenberg et al., 2008; Lafuerza et al., 2016b; 
Niemann et al., 2021; Rhodes et al., 2016; Tregubov 
& Blythe, 2020). Rhodes et al. (2016) showed that 
ABMs can be simplified by several orders of magni
tude and still produce a very similar system-level 
behaviour while reducing runtime and data output. 
In a similar approach, Lafuerza et al. (2016b) aimed to 
understand a complex intricate ABM of voting using 
a series of simplified models and showed that a certain 
range of modelling capabilities can be maintained in 
simplified models over a particular range of parameter 
values (Lafuerza et al., 2016b). In Tregubov and Blythe 
(2020), several model simplification methods such as 
sub-sampling agents and simplifying agent behaviour 
were evaluated, showing improvements in computa
tion time with little reduction in model predictive 
accuracy. While simplification may help reduce the 
computation burden of ABMs, such an approach can
not be guaranteed to generalise and, as there are still 
interactions that need to be computed, even the sim
plest ABM required to simulate a particular system 
might be computationally expensive.

Meta-modelling and analytical emulators have the 
potential to resolve the computation issue by trans
forming the emulation problem to that of simply find
ing a mapping function between the inputs and 
outputs of ABMs. The well-trained emulator might 
be able to learn all combinations of inputs/outputs 
such that in real-time the emulator can be used in 
place of the ABMs for computational efficiency. 
There are studies such as Niemann et al. (2021) 
which used ordinary and stochastic differential equa
tions (SDEs) to approximate stochastic ABMs of med
ium to large agent populations, but to date, many of 
the emulators of ABMs that have been developed are 
GPs (Bijak et al., 2013; Dosi et al., 2018; Heard, 2014; 
Hilton, 2017). GPs provide a confidence interval for 
each estimate, so fewer model runs are required to 
explore the parameter space and statistical 

characteristics of the ABM. Bijak et al. (2013) pre
sented a Semi-Artificial Model of Population, which 
is a fusion of demographic micro-simulation and an 
ABM, to address the problem of modelling population 
dynamics, specifically the impacts of certain para
meters on population size and share of married agents. 
Dosi et al. (2018) analysed policy impacts using ABMs, 
where GPs were used as part of their sensitivity ana
lysis on key variables and parameters. The benefits of 
GPs in the model calibration and statistical inference 
problem of ABMs have also been explored in Heard 
(2014), where observed data and ABM simulation 
outputs were used to fit and calibrate GP approxima
tions. In Hilton (2017), a GP emulator was used to 
quantify the uncertainty in the outputs of ABMs and 
also to calibrate an ABM against empirical observa
tions. Oyebamiji et al. (2017), Oyebamiji et al. (2019)) 
developed GP regression models to emulate dynamic 
and stochastic individual-based models of microbial 
communities.

The majority of meta-modelling emulators have 
been designed to support calibration and sensitivity 
analysis rather than for use in making real-time pre
dictions. When attempting to predict in real-time, the 
computation complexity is not the only challenge, but 
also the lack of individual-level data for a 1-to-1 simu
lation. This paper aims to develop an emulator frame
work that can work with aggregated data, that are 
widely available, to represent an ABM and make pre
dictions in real-time.

3. Methodology

We propose a framework for real-time prediction 
using emulators of ABMs. We have developed this 
framework to use the emulator to make real-time 
predictions of the near future, whilst having the flex
ibility to adapt to incoming data. Broadly, our pro
posed approach is to develop an ABM to represent the 
target system, train an emulator using aggregated data 
outputs from the ABM, and then use the emulator, 
rather than the ABM itself, to make real-time predic
tions. The use of the emulator in this setting is advan
tageous because: (i) the ABM is too computationally 
expensive to return results in an adequate time; and 
(ii) the emulator makes predictions using aggregate 
data, whose availability is more likely than the indivi
dual-level data. This section outlines the methodology 
in detail.

Let Zt 2 R r denotes the set of outputs from an ABM 
at discrete time t 2 Z and since the ABM is stochastic, 
variables in Zt are random. The choice of discrete time 
is motivated by our assumption that aggregated data 
will be made at discrete points in time and projecting 
these onto the integers is purely for convenient nota
tion. We assume that the ABM is parameterised by 
a vector of parameters θ, that might be completely 
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unseen in real-time. Zt consists of ½Xt; yt�. Observation 
data Xt are assumed available in real-time, and yt is the 
additional output from an ABM which is often unob
servable in real-time, or completely unobservable. Note 
that in practice we would have to calibrate the values 
of parameters θ such that the ABM can adequately 
represent the underlying system, and replicate Xt to 
be sufficiently similar to the real aggregated data. In 
this paper, we assume that our ABM has already been 
calibrated and the provided Xt are similar to the real 
data. We are then interested in an emulator function 
f that can map the available aggregated data Xt with 
Zt , i.e., Zt ¼ f ðXtÞ, and also can make predictions, 
e.g., Ztþk ¼ f ðXtÞ with k> 0.

We propose a “bi-phase” framework, illustrated in 
Figure 1. The first phase of the framework, the 
Training phase, aims to train the emulator so that it 
can predict the behaviour of the real system. We 
assume that the emulator cannot learn this behaviour 
from the underlying system directly for two reasons. 
Firstly, there may be important information required 
by the emulator that can only be extracted from the 
ABM. For example, in the case study used in this paper 
we are interested in the delay caused to individual 
pedestrians in a crowd. This can be calculated by 
examining the individual agents in the model but not 
inferred from aggregate (real world) data. Secondly, 
even if a system is studied over a long period, likely, 
some more extreme system states will not occur. 
Therefore the emulator will be trained on “business 
as usual” system behaviour and will not be able to 
work well in more extreme scenarios. Using an 
ABM, not only can a large volume of training data 

be created, but a wide variety of system states can also 
be simulated. Therefore we develop an ABM to repre
sent the target system (pedestrians moving through 
a corridor in this case) and use the ABM to create 
simulated input and output data for emulator training. 
This training phase is done before real-time imple
mentation of the emulator as it requires multiple runs 
of the ABM to generate the training data, which will be 
a computationally-expensive step. Since the training 
data do not need to be produced quickly, as would be 
the case if the ABM were making real-time predic
tions, the computation time at this stage in the frame
work is not problematic. Also, the emulator will not 
need to be retrained unless there is a significant change 
to the underlying system, in which case the ABM will 
also need to be recalibrated and re-run to produce new 
data that reflect the new dynamics of the system. As 
Section 4.2 will discuss, the emulator is trained and 
tested using well-established machine learning 
methods.

In the second phase of the framework, the Real- 
time phase, information about the system is collected 
in real-time and these data are used as inputs to the 
trained emulator. In this manner, the emulator can 
predict the short-term future behaviour of the system 
without the need for running an ABM. It is important 
to note that, in this preliminary application, the real- 
time phase does not actually use real-world data. 
Instead we follow a “pseudo-truth” or “digital-twin” 
experiment approach, similar to Wang and Hu (2015) 
and Kieu et al. (2020) to evaluate this framework. 
Rather than using real observations, the data will be 
generated from the ABM. This is advantageous 

c1(t-1)
...
c10(t-1)
...
c1(t-L)

Time t Time t+1

1. Training phase

2. Real-time phase

...

Quasi real-time
pedestrian counts
L >0

c1(t+k)
c2(t+k)
...
c10(t+k)
d(t+k)

Forecasts of 
pedestrian counts and delay 
for a future k timesteps (k>0)

Quasi real-time
pedestrian counts
L>0

Training
inputs: 
counts at
each sensors

Training
outputs: 
counts and
delay

c1(t)
...
c10(t)
...
c1(t-L+1)

Possible number
of pedestrians

Figure 1. Study framework.

4 M. KIEU ET AL.



because it means that the true system state can be 
known, so errors can be calculated accurately. In addi
tion, we can evaluate the framework on a wide range 
of synthetic data to “stress test” it under various sce
narios. Future work will move towards using real 
crowd data, such as those made available by Zhou 
et al. (2012). As Section 4 will discuss, we assume 
that ten pedestrian sensors are deployed in the envir
onment, and count the number of pedestrians who 
pass through them. Hence the task of the emulator is 
to estimate what the subsequent counts at these sensed 
points will be. In addition, the emulator is also tasked 
with estimating the overall delay to the pedestrians; in 
congested scenarios it will take longer for pedestrians 
to be able to traverse the environment.

The need for fast emulators means that GP emula
tors are not ideal due to their high computational 
complexity, so we do not consider them here. 
Instead, we test two different types of well-known 
machine learning emulators. We adopt a static emu
lator, Random Forest (RF) regression, because it is 
widely used and has been shown to be effective in 
modelling non-linear relationships. As RF regression 
does not directly treat the data as a time-series, we also 
experiment with a Long Short-term Memory (LSTM) 
neural network, which uses multiple time steps in the 
near past to forecast the near future. The following 
sub-sections provide brief descriptions of each these 
techniques.

3.1. Regression emulator: Random forest

RF regression models are typically trained to predict 
univariate output, so multiple models have to be 
trained to predict each of the q required outputs in 
Yt (in this case the counts of pedestrians at different 

sensor locations). In effect, we consider this emulator 
as an “ensemble regression emulator”, as illustrated in 
Figure 2.

The RF is an ensemble method that makes predic
tions by combining the decisions from multiple indi
vidual models, i.e., 

f ðxÞ ¼
1
B

XB

i¼1
TiðxÞ; (1) 

where each individual model Ti is a simple Decision 
Tree (Breiman, 2001), built upon a statistical techni
que called bagging. Interested readers may refer to 
Breiman (2001) for a more detailed and formal 
description. The effectiveness of RFs comes from two 
key concepts:

● Each tree is built and learnt from a random sam
pling of training observations. This is to reduce 
the overall variance in the entire RF model but 
not at the cost of increasing bias;

● Splitting nodes in each tree using random sub
sets. This reduces the potential for over-fitting 
because each tree only sees a subset of all training 
features when deciding to split a node.

We train 11 RF models for each value of look- 
ahead time step k, where the first 10 models predict 
the counts at each of the 10 pedestrian sensors at 
time step t þ k and the eleventh model predicts the 
delay to the pedestrians. These models are trained 
using the same input: the pedestrian counts at the 
previous time step t � 1 (as showed in Figure 2). 
The training input for the regression emulator is 
2D array of size D� 10, where D is the sample size 
of the input data.

Figure 2. A regression emulator of agent-based models using random forest regression.
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3.2. Time-series emulator: Long short-term 
memory

One major disadvantage of regression techniques in 
learning time-series patterns, even for powerful techni
ques such as RFs, is that there is no consideration of 
longer-term temporal dependency in the data, e.g., the 
ability to learn from multiple historical observations to 
predict the next state. In regression models, time can be 
used as a variable to predict, but there is no dependency 
between successive time steps. We define the frame
work for the ABM time-series emulator as in Figure 3.

While it is possible to include historical observation 
data in the input vector Xt , we might expect that recent 
observations will have a significant temporal correla
tion. To account for this, the time-series emulator 
takes inputs from Xt� L to Xt� 1, where L> 0 defines 
a “look-back window”. Defining the value of L is 
a trade-off problem that has to be solved through 
experimentation. Choosing L too large leads to unne
cessarily long computation time and numerical 
instability, but too small L will not fully capture the 
temporal dependency between time steps. After 
experimenting with different values we take L ¼ 5 
based on the resulting Mean Absolute Error. Thus, 
the training input for the time-series emulator is 3D 
array of size D� 10� L.

For our time-series emulator, we adopt the Long 
Short-term Memory (LSTM) recurrent neural net
work. Interested readers may refer to the Appendix 
for a brief description of the LSTM, or to Hochreiter 
and Schmidhuber (1997) for a detailed explanation of 
the method. There are several parameters to be deter
mined when constructing an LSTM network. These 
parameters were selected by both heuristic methods 
(to limit parameter value ranges) and grid search for 
a limited set of parameters. The detailed architecture 
and optimal parameters for our LSTM network is 
described below:

● LSTM layer with 32 nodes to learn temporal 
dependency of the time series.

● A dense layer with 32 nodes to enhance the gen
eralisation level of the model.

● A final dense layer with 11 nodes (equal to the 
number of outputs) to predict next values of 10 
sensors and overall delays.

● The model is then compiled with an Adaptive 
moment estimation optimisation mechanism 
(ADAM).

● The loss function during training is the mean 
absolute error (MAE) and the metrics function 
for model evaluation is the relative mean error.

4. Case study: Pedestrian crowding

4.1. StationSim

We use a simple ABM of pedestrian dynamics 
(Malleson et al., 2020) named StationSim as a case 
study. The model has been designed to very loosely 
represent the behaviour of a crowd of people moving 
from an entrance on one side of a rectangular corridor 
to an exit on the other side. This is analogous to people 
disembarking from a train and moving across the 
concourse of a train station. The model environment 
is illustrated in Figure 4, with the trajectories of two 
interacting agents for illustration.

The model does not attempt to match the beha
vioural realism offered by more developed crowd 
models, such as those that adopt the Social Force 
model (Helbing et al., 2000). The reason for this sim
plicity is so that: (1) the model can execute relatively 
quickly; (2) the probabilistic elements in the model are 
limited (we know precisely from where probabilistic 
behaviour arises); and (3) the model can be described 
fully using a relatively simple state vector. 
Importantly, the model can capture the emergence of 
crowding. This occurs because each agent has 
a different maximum speed that they can travel at, so 
fast agents will try to overtake slower ones, but also 
because there is a limited space in which agents can 
walk and there is a limited rate at which agents can 
leave the environment.

Given a rectangular 200 m x 100 m corridor 
(Figure 4), N agents are generated as the model initi
alises. We assume that within the simulation time 
interval ½0;T�, there are W roughly periodic waves of 

Figure 3. A time-series emulator of agent-based models using long short-term memory.
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arrivals of pedestrians, with some random deviations 
δw. We choose W ¼ 3 and these waves start at times 
δ1;

1
3 T þ δ2 and 2

3 T þ δ3. This is analogous to multiple 
trains arriving at near regular times during the simu
lation time interval. Within each wave, the agents 
enter the environment (leave their train) at 
a uniform rate through one of the three entrances. 
They move across the “concourse” and then leave by 
one of the two exits. The entrances and exits have a set 
size, such that only a limited number of agents can 
pass through them in any given iteration. This config
uration represents a typical problem that ABMs excel 
at because it involves the simulation of individuals 
with heterogeneous behaviour and with patterns (i.e., 
congestion) that emerge from the interactions 
between individuals.

We also assume a set of 10 pedestrian counters are 
equally spaced along the corridor, which provide the 
number of pedestrians who walk past the sensor (see, 
Figure 4). This is a fair assumption in practice because 
pedestrian counters are widely available in many pub
lic places. Figure 5 shows the counts at sensors 1, 5 and 
10 at each time step from 0 to 1200s. Because of 

differences in walking speed between agents and the 
emergence of crowding, the counts at each sensor are 
very different. At the first sensor near the entrance 
(sensor 1), the three waves (i.e., three train arrivals) 
are easily identified, with the pedestrians uniformly 
leaving the train. These waves are still visible in sensor 
5, in the middle of the environment, but model sto
chasticity causes them to be much less clearly defined. 
By the time the agents reach sensor 10, at the end of 
the corridor, the waves can no longer be easily 
distinguished.

Despite being simple, this model has three of the 
most important characteristics of an ABM: 

– individual heterogeneity: agents have different 
maximum travel speeds;

– agent interactions: agents are not allowed to 
occupy the same space and try to move around 
slower agents who are blocking their path;

– emergence: crowding is an emergent property of 
the system that arises as a result of the choice of 
exit that each agent is heading to and their max
imum speed.

4.2. Training the ABM emulators

The Training phase starts with the generation of train
ing data. To expose the emulator to a wide range of 
possible system behaviours, we randomly generate 
multiple sets of agents with random maximum speeds, 
starting entrances and desired exits. Experiments are 
conducted with populations of N ¼ 100 (few colli
sions and hence largely linear deterministic agent 
behaviour) up to N ¼ 500 agents (many collisions, 
considerable crowding, large stochasticity). Each set 
of parameters is fed into the ABM to generate syn
thetic “historical” aggregated pedestrian counts c and 

Figure 5. Counts of pedestrians at sensor 1, 5 and 10 at each time step.
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Figure 4. The stationsim model; adapted from. malleson et al. 
(2020).
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mean delay �d. The mean delay �d is the average of the 
difference between the time each agent spent to get 
into its current position versus the time that it would 
have spent if it could walk with its desired speed, i.e., 

�d ¼
1
N

XN

i¼1
τi �

xi

vi
;

where τi is the time taken by agent i to cross from 
where they entered to their current position, xi is the 
corresponding straight line distance and vi is agent i’s 
desired speed.

This is a useful statistic as it works as a proxy for 
the level of crowding, hence the emulator can be 
used to predict the emergence of crowding in the 
near future.

The simulation is executed 30 times for each popu
lation size, N, by generating new sets of random agents 
and re-running the ABM to create a rich synthetic 
training dataset. We then split the synthetic data into 
training input and training outputs. The training 
inputs are the aggregated counts of pedestrians from 
each sensor. The training outputs, which the emulator 
is tasked with estimating, are the aggregated counts 
and mean delay �d at future time steps.

In the Real-time phase we assume that we only 
have access to the quasi-real-time aggregated 
counts of pedestrians at the 10 sensors along the 
corridor on Figure 4. Hence we need an emulator 
to use these counts to predict future aggregated 
counts and delay. The data are quasi-real-time 
because we assume that at the current time step t, 
only aggregated counts at previous time steps t � L 
to t � 1 are available. The trained emulators pro
cess these inputs to predict the aggregated counts 
and delay at the current time step t and near-future 
time steps, the forecast period, t þ k, for k> 0. At 
the next time step t þ 1, we assume that the data 
recorded by the sensors at time t are now available 
and can be used to predict the next time steps in 
the near future.

5. Numerical experiments

This section describes the experimental setup and 
results. Following the framework described in 
Section 3, recall that the emulators are trained using 
a synthetic “historical” dataset of 30 replications from 
StationSim, with varying agent population sizes. The 
emulators’ predictive ability will now be evaluated 
using another synthetic “real-time” dataset that is 
completely unseen to them and created by running 
StationSim once. This provides “pseudo-truth” aggre
gated pedestrian counts and delays. We evaluate the 
two classes of emulator for ABM with two 
experiments:

(1) The total pedestrian population is known: the 
emulators are trained and evaluated using data
sets with the same population size. For 
instance, the performance of a regression emu
lator that has been trained using the population 
data of N ¼ 500 agents will be evaluated against 
a pseudo-truth “real time” dataset with 500 
agents.

(2) The total pedestrian population is unknown: 
the emulators are trained once with all the 
training data available (with populations sizes 
N 2 f100; 200; 300; 400; 500g) and evaluated 
separately on “real-time” data with different 
population sizes. For instance, a regression 
emulator that has been trained using all avail
able population data will be evaluated 5 times, 
using “real time” data for population sizes 
N 2 f100; 200; 300; 400; 500g. An emulator 
that generalises well will be able to estimate 
the counts at each gate and the mean delay 
without knowing the size of the population. 
This experiment is more practical because in 
reality the total pedestrian is often unknown in 
real-time.

5.1. Experiment 1: Known pedestrian population 
size

In the first experiment, we assume that the total number 
of pedestrians that will walk through the corridor is 
known. We evaluate the accuracy of each class of emu
lator when the pedestrian population is N 2
f100; 200; 300; 400; 500g pedestrians. Figure 6 shows 
the prediction of the aggregated pedestrian counts at 
each sensor during the study period using the regres
sion emulator and the time-series emulator for the case 
where the forecast period is k ¼ 5 and k ¼ 15 time 
steps into the future. The red lines show the predicted 
counts at each sensor and each time step, whereas the 
black lines show the pseudo-truth real-time counts.

Similarly, Figure 7 shows the prediction results 
from the time-series emulator.

The two figures illustrate the predicted counts (in 
red) and the synthetic real-time counts (in black) from 
each sensor and across time. In Figures 6 and 7, the 
evaluated pedestrian population is 500.

Overall, both of the emulators perform very well in 
the prediction of aggregated counts. The overall fluc
tuations of the aggregated pedestrian counts are cap
tured closely with a few exceptions where the synthetic 
real-time counts (black line) reach a peak. In both 
classes of emulators, the further prediction (k ¼ 15) 
has slightly lower accuracy. Figures 6 and 7 clearly 
show that the emulators have enabled us to work 
with aggregated data to produce outputs that are simi
lar to those produced by the ABM.
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Figures 8 and 9 show the prediction of mean pedes
trian delays (a proxy for crowding) in the study corri
dor for the regression and time-series emulators 
respectively. The figures show the predicted 

delays (in red) versus the synthetic real-time delays 
(in black) when the agent population is N 2
f100; 200; 300; 400; 500g and the simulation time is 
T ¼ 1200. The figures clearly show that the delays 

Figure 6. Prediction of pedestrian counts at each sensor using the regression emulator. red line: predicted counts, black line: 
synthetic real-time counts.

Figure 7. Prediction of pedestrian counts at each sensor using the time-series emulator. red line: predicted counts, black line: 
synthetic real-time counts.
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increase significantly as the agent population 
increases. The delay is clearly correlated with the 
three waves of pedestrian arrivals, with a sudden 
drop in delay after each wave. Predicting these waves 
of delay is challenging because of this sudden drop and 
because the location, the peak and the steepness of 
each curve is stochastic.

Both emulators capture the general trend in the 
mean delay reasonably well. The performances are 
lower than the prediction for aggregated pedestrian 
counts because the emulators cannot capture some of 
the peaks and troughs in the values of mean delay. This 
can be explained by the lack of the historical values of 
delay in the input, as mentioned in Section 4. The 

Figure 8. Prediction of delays using the regression emulator. red line: predicted delay, black line: synthetic real-time delay.

figure 9. Prediction of delays using the time-series emulator. red line: predicted delay, black line: synthetic real-time delay.
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regression emulator (Figure 8) shows noticeably more 
fluctuations in its prediction than the time-series emu
lator (Figure 9), with several cases of large prediction 
errors. It shows that the regression emulator is less 
reliable in its prediction compared to the time-series 
prediction. We further illustrate this point in Figure 10, 
which shows the difference between the predicted 
mean delay with the synthetic real-time mean delay 
for the case where the forecast period is k ¼ 5, and 
the agent population is 100 and 200. The closer the 
lines are to zero, the better the prediction. The residuals 
from the regression emulator are more volatile, indicat
ing that the regression emulator is a less stable predic
tion compared to the time-series emulator.

Table 1 shows the comparison of prediction accu
racy between the regression emulator (RF) and the 
time-series emulator (LSTM). The comparison values 
are of the Mean Squared Error (MSE), 

MSE ¼
1
T

XT

t¼1
ð�dt � d̂tÞ

2
; (2) 

where �dt is the synthetic real-time mean delay at time 
t, and d̂t is the predicted mean delay at time t. The 
predictions in Table 1 are made for forecast periods 

k 2 f5; 10; 15g. The numbers on the time-series emu
lator are showed in bold if the MSE is lower than its 
regression counterpart, and vice-versa. The time- 
series emulator has a better accuracy compared to 
the regression emulator, by 13.16% on average.

5.2. Experiment 2: Unknown pedestrian 
population

The next experiment assumes that in real-time the 
total number of pedestrians who will enter the 
system is unknown, so only the aggregated counts 
at each sensor are available to the emulators. This 
is much closer to the situation that would arise in 
reality. The framework is exactly the same as the 
previous experiment, apart from the fact that now 
the training input data of all agent population sizes 
N 2 f100; 200; 300; 400; 500g are fed into the emu
lators for training. The trained emulators are then 
evaluated against five different sets of “real time” 
data, one created for each of the five different 
population sizes, to see how well they can predict 
different crowd sizes.

Using the regression and time-series emulators, 
we found that predictions of pedestrian counts are 
very similar to previous experiments (e.g., when 
compared to the results in Figures 6 and 7). To 
better differentiate the results, Figure 11 shows 
a heat map of the Mean Absolute Error of the 
predictions of aggregated pedestrian counts using 
the regression emulator (on the top row) and the 
time-series emulator (on the bottom row) when the 
emulators know the pedestrian population (on the 
left) and with an unknown population (all the data 
are used, on the right). All the tests are done for the 

Figure 10. Comparison between the prediction errors from regression versus time-series emulators.

Table 1. Comparison of prediction accuracy (MSE) for 
Experiment 1. The bold number shows the lower error when 
comparing the regression to the time-series emulator.

Regression emulator Time-series emulator

Population 5s 10s 15s 5s 10s 15s

100 18.21 20.82 21.02 15.12 17.37 22.25
200 22.09 20.72 21.53 17.14 15.38 18.72
300 23.05 23.59 23.83 23.26 23.78 21.93
400 21.37 23.03 25.36 18.75 16.78 20.11
500 24.06 26.32 29.51 23.16 20.36 24.86
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forecast period k ¼ 15. The lighter colour illustrates 
better prediction accuracy. Three distinct patterns 
are visible:

● First, the prediction accuracy is better with smal
ler agent populations. This is expected because 
with fewer agents there are fewer collisions, so the 
behaviour of the agents is nearly deterministic.

● Second, the time-series emulator shows better pre
diction accuracy (lighter colours on Figure 11) 
especially at higher agent populations (400 and 
500 agents). The regression emulator performs 
worse at the first sensor (Sensor 0), because it 
does not take into consideration the historical 
counts. When the train has not yet arrived and 
there are no pedestrians in the corridor, the 

Figure 11. Comparison of the prediction results for aggregated pedestrian counts at each sensor.

Figure 12. Experiment 2: prediction of delays using the regression emulator. red line: predicted delay, black line: synthetic real-time 
delay.
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emulators still make a prediction based on histor
ical patterns that some pedestrians should be in the 
corridor. The time-series emulator partly solves 
this problem by including more data from the 
near past time steps, as illustrated in Figure 11.

● Third, there are no significant differences in 
terms of prediction accuracy between the 
known and the unknown pedestrian population 
scenario (the colours are very similar from the 
left to the right of Figure 11) apart from a few 
occasions when the emulators perform slightly 
better when the pedestrian population is known. 
This pattern can be seen near Sensor 0, where 
differences in pedestrian demand are really 
important.

We will now look at the prediction of mean 
pedestrian delay in Figures 12 and 13. Both emu
lators capture the trends in mean delay, with com
parable results to those of the Experiment 1 (see, 
Figures 8 and 9).

Table 2 compares the emulators in more detail. 
Again, we see that the prediction accuracy from the 
time-series emulator is significantly better than the 
regression emulator in all tests, by 22.1% on average. 
The time-series emulator is noticeably better in 
Experiment 2 – when the emulator has to generalise 
to make prediction – as the number of pedestrian is not 
observed. The LSTM takes advantage of the historical 
pedestrian counts from the last 5 time steps to predict 
much more accurately than the regression emulator.

Figure 14 shows a heat map of the Mean Absolute 
Error of the predictions of delay using the regression 
emulator (left two columns) and the time-series emu
lator (right two columns) when the emulators know the 
pedestrian population and with unknown population.

figure 13. Experiment 2: prediction of delays using the time-series emulator. red line: predicted delay, black line: synthetic real-time 
delay.

Table 2. Comparison of prediction accuracy: experiment 2.
Regression emulator Time-series emulator

Population 5s 10s 15s 5s 10s 15s

100 23.58 23.50 25.14 16.09 16.44 16.97
200 29.13 29.59 30.43 16.43 17.14 18.95
300 26.68 26.00 26.70 21.12 21.65 22.98
400 21.25 23.61 24.95 21.14 18.51 20.14
500 32.30 35.38 33.85 30.77 30.34 33.17

Figure 14. Comparison of the prediction results for delay. 
r-unknown: regression emulator predicts unknown population, 
r-known: regression emulator predict known population, ts- 
unknown: time-series emulator predicts unknown population, 
ts-known: time-series emulator predicts known population.
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All the tests are done when the forecast period is 
k ¼ 15. The lighter colour illustrates better prediction 
accuracy. Two patterns are visible:

– Similar to the prediction of counts, the prediction 
accuracy is better with smaller agent populations. 
The time-series emulators outperform the regres
sion emulator counterparts.

– There is now a distinct difference between the pre
diction accuracy of delay when the population is 
known, versus when the population is known. 
Models with known populations perform much 
better.

6. Discussion and conclusion

6.1. Summary

This paper proposes a new framework that enables 
ABM researchers and practitioners to benefit from 
emulators to make predictions based on ABMs in real- 
time. The framework, as outlined in Figure 1, allows 
emulators to learn from the outputs of an ABM to 
achieve two major points. First, the emulators enable 
a real-time prediction using a fraction of the computa
tion time required when compared to using the ABM to 
make predictions. We test two classes of emulators: 
a random forest regression and a time-series model. 
While they both need to be trained using the data 
generated from the ABM, which is an expensive pro
cess, they can provide predictions of pedestrian counts 
and mean delay. Second, the emulators enable us to 
predict directly from aggregated data (i.e., counts from 
each sensor), instead of relying on individual-level data. 
This is especially important if individual data are not 
available in real-time due to technical or privacy chal
lenges, which is extremely common in practice.

Both emulators perform well at predicting aggre
gated pedestrian counts and mean delay for both 
Experiment 1 and 2. Between the two emulators, the 
time-series model performs slightly better in 
Experiment 1 (when the number of pedestrians is 
observed) and significantly better in Experiment 2 
(when the number of pedestrians is unknown). 
Experiment 2 is more practical, showing the greater 
generalisability of the time-series emulator, as in prac
tice the number of pedestrians entering the environ
ment (i.e., travellers on a train) may be unknown. The 
time-series emulator generally takes more time to 
train, but takes less time to make a prediction. This 
is because the regression emulator needs 11 individual 
Random Forests to predict the q ¼ 11 values of the 
output variable at each time step, while we need only 
one time-series model to make predictions for the 
same output. Therefore, the time-series emulator is 
more feasible to use in practice.

6.2. Caveats

This paper has focused on developing the framework 
and evaluating it using synthetic data. Although we 
have shown that the framework enables us to use 
emulators to predict the output of ABMs in real-time, 
a limitation of this paper is the lack of real data in the 
evaluation. The identical twin experimental framework 
has advantages in that it allows us to accurately calcu
late error because the “truth” is known, but it is limited 
in that the pseudo-truth data might not be as rich as 
data derived from a real system. In addition, we assume 
that the ABM that is used to train the emulator is able 
to adequately capture the dynamics of the target sys
tem. If the ABM is not able to model the target ade
quately – e.g., due to a lack of accurate observational 
data or unknown behavioural parameters – then the 
emulator will not be able to reliably make predictions 
about the real system. Future research directions 
include the use of real data for a pedestrian system, 
which would allow the same framework to be used with 
the only difference being that the ABM should be first 
calibrated to the real-world observations.

One of the advantages of the proposed framework is 
that the most computationally-intensive part – running 
the ABM a large number of times to generate training 
data for the emulators – can be conducted offline in 
advance. However, it is important to note that for larger, 
more complex agent-based models, the time taken for 
them to execute, and the amount of data they generate, 
might become problematic. One solution to this problem 
would be to adapt the framework so that the creation of 
synthetic data and the training of the emulators could 
take place simultaneously, rather than creating all of the 
synthetic data in one step, and then training the emula
tors in the next. Whilst this does not solve the problems 
associated with computationally-expensive ABMs, it sig
nificantly reduces the amount of data storage required – 
once a model result has been incorporated into the 
emulator it can be discarded – and reduces the extra 
time that would be required to train the emulator after 
the ABM has finished running.

7. Conclusion

This paper proposes a new framework to enable real- 
time agent-based modelling through the use of emu
lators. Experiments with a regression emulator and 
a time-series emulator suggest that the time-series 
emulator proves to generalise better to cases where 
the number of agents in the system is not known 
a priori. The results have implications for the real- 
time modelling of human crowds, suggesting that 
emulation is a feasible approach to modelling crowds 
in real-time, where computational complexity prohi
bits the use of an ABM directly.
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Appendix. Long Short-term Memory

This appendix briefly describes the Long Short-term 
Memory (LSTM), a recurrent neural network (RNN). 
The RNN was first introduced where a loop connection 
is added to each unit along a sequence (e.g., organised by 
timestamps) mikolov2010recurrent. A hidden vector h is 
maintained in the RNN, which is updated at time stamp 
t via 

ht ¼ tanhðW � ht� 1 þ I � xtÞ (A1) 

where W is the recurrent weight matrix and I is a projection 
matrix. Then a prediction will be made based on the hidden 
state h via 

yt ¼ softmaxðW � ht� 1Þ; (A2) 

where the function softmax provides a normalised probabil
ity distribution over the possible classes. By using h as the 
input to another RNN, we can stack RNNs, creating deeper 
architectures pascanu2013construct, i.e., 

hl
t ¼ σðW � hl

t� 1 þ I � hl� 1
t Þ: (A3) 

As a consequence, an RNN can be considered as multiple 
repetitions of the same structure, where each is connected to 
the successor. The internal design of an RNN layer with 
compatible unrolled network is presented in Figure A1.

A chunk of neural network M takes some input Xt and 
outputs a value ht . The RNN architecture can be seen as 
multiple copies of the same network M, each transmit
ting a message to a successor, as also illustrated in Figure 
A1.

The RNN architecture can record the information for 
a few previous timestamps. However, while RNN outper
forms ANN in modelling the temporal dependency between 
sequences, the RNN has the problem of long-term depen
dency. Instead of having a “memory” to store the informa
tion, RNN simply carries the information forward and 
updates it in every time step sak2014long. In other words, 

RNN only uses recent information to perform the present 
task, which is not ideal for dealing with time-series 
prediction.

This shortcoming is addressed by the Long Short- 
Term Memory (LSTM) network hochreiter 1997 long, 
which is an extended RNN architecture capable of 
learning long-term dependencies. LSTM carries the 
information forward through multiple time steps as 
a long-term memory. It has a similar chain architecture 
as in the RNN but the repeating modules have a special 
internal design. An RNN module only has single neural 
network layer (e.g., tanh layer) while there are four 
different interacting layers inside a LSTM module. 
Figure A2 illustrates a standard LSTM with four inter
acting layers.

At each time stamp, a hidden vector h and a memory 
vector m is maintained by the LSTM, which are responsible 
for controlling state updates and outputs.

The information to be “forgotten” when passing through 
a gate is controlled by the forget function ft , 

f t ¼ σðWf � ½ht� 1; xt� þ bf Þ: (A4) 

There are two steps which control the information to be 
carried in the cell state. Firstly, a sigmoid layer called the 
“input gate layer”, 

it ¼ σðWi � ½ht� 1; xt� þ biÞ; (A5) 

decides which values are to be updated. Next, a vector of 
new candidate values is generated by a tanh layer, 

~Ct � tanhðWc � ½ht� 1; xt� þ bcÞ; (A6) 

that could be added to the state.
The current cell state ~Ct will be updated by multiplying 

the forget function ft with the old state, then combining with 
it � ~Ct , i.e., 

Ct ¼ f t � Ct� 1 þ it � ~Ct: (A7) 

Finally, the output of a cell state is decided by 

Figure A1. RNN and unrolled RNN.
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ot ¼ σðWo � ½ht� 1; xt� þ boÞ (A8) 

and 

ht ¼ ot � tanh ðCtÞ; (A9) 

where σ is the sigmoid function, Wf ;Wi;WC;Wo are recur
rent weight matrices and bf ; bi; bC; bo are projection 
matrices.

Besides different module structure, the key factor in 
the LSTM is the connection line (on the top of the 
diagram) running through the entire architecture with 

only simple linear combinations. This connection 
allows long-term information to flow smoothly along 
the sequences. Each cell state in a LSTM is able to 
control the amount of information allowed to pass 
through the cell using the regulated elements called 
gates. A sigmoid layer under a point-wise multiplica
tion operation will make up a gate and a LSTM has 
three of them. Because a sigmoid layer outputs num
bers between zero and one, the amount of information 
passing through a gate can range from “nothing” to 
“everything”.

Figure A2. A standard LSTM module with four interacting layers.fv

18 M. KIEU ET AL.


	Abstract
	1. Introduction
	2. Literature review
	2.1. Analytical emulators
	2.2. Meta-modelling approaches
	2.3. Emulators of ABMs

	3. Methodology
	3.1. Regression emulator: Random forest
	3.2. Time-series emulator: Long short-term memory

	4. Case study: Pedestrian crowding
	4.1. StationSim
	4.2. Training the ABM emulators

	5. Numerical experiments
	5.1. Experiment 1: Known pedestrian population size
	5.2. Experiment 2: Unknown pedestrian population

	6. Discussion and conclusion
	6.1. Summary
	6.2. Caveats

	7. Conclusion
	Disclosure statement
	Funding
	ORCID
	References
	Appendix. Long Short-term Memory

