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ABSTRACT
Microsimulationmodels of bus routes allow transit operators to both better
understand the dynamics of bus routes and facilitate better policy mak-
ing. Several simulation models of bus routes have been proposed in the
literature, including cellular-automata, bus-following and traffic-following
models. The majority of these approaches aim to simulate the interactions
of a bus with other buses (the bus-following model), with passengers or
the surrounding traffic (the traffic-followingmodel), but they all fail to con-
sider the important interactions between buses and their schedules. In a
conventional schedule-based public transport system, bus drivers aim to
arrive at each stopon time. Thismeans that theywill either speedupor slow
down if their vehicles are notmeeting the schedule. The researchwithin this
paper is a novel contribution to the literature of bus route simulation. We
introduce the first schedule-following model where buses try to adhere to
their schedule in a conventional schedule-based public transport system.
A simulated numerical analysis shows the characteristics of the proposed
schedule-following model and compares it to existing models. Finally, the
model is calibrated using Automatic Vehicle Location and Smart Card data
fromBrisbane, Australia. The results showgoodmodel performance against
the observed data. The model is relatively simple, yet the fundamental
mechanisms that drive the model are novel and it has the potential to be
applied in any city with well-defined bus schedules.
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1. Introduction

Microsimulation of transport systems is a topic of considerable interest from researchers and prac-
titioners. Traffic microsimulation in particular has evolved from simple car-following models (Tang
et al. 2012b) to sophisticated commercial software packages such as Aimsun (Aimsun 2018). Public
transport simulation is often reduced to a simple component in these packages, with the main focus
being to investigate the impact of buses on traffic.

Nevertheless, the simulation of buses has attracted several methodological approaches over the
years with Cellular Automata (CA) modelling being one of the most successful approaches (Luo
et al. 2012; O’loan, Evans, and Cates 1998; Chowdhury and Desai 2000; Jiang, Bin Jia, and Wu 2003).
Whilst the dynamical foundations of CAmodels are well understood, they are regularly outperformed
by more sophisticated models such as bus-following models (Nagatani 2000; Huijberts 2002; Tang
et al. 2012a; Nagatani 2001; Hill 2003) and traffic-followingmodels (Cats et al. 2010; Toledo et al. 2010;
Hans et al. 2015). Bus-following models account for the fundamental dynamics of a bus route as indi-
vidual buses followeachother. They are similar to car-followingmodels in that the speedof thebuses is
dynamically adjusted tomaintain the schedule. Traffic-followingmodels take amore holistic approach

CONTACT Le-Minh Kieu m.l.kieu@leeds.ac.uk

© 2019 Hong Kong Society for Transportation Studies Limited

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21680566.2019.1670118&domain=pdf&date_stamp=2019-09-24
http://orcid.org/0000-0001-7798-6195
http://orcid.org/0000-0002-0446-5636
http://orcid.org/0000-0002-6977-0615
http://orcid.org/0000-0001-6969-7764
mailto:m.l.kieu@leeds.ac.uk


TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1589

simulating buses as one component of the transport system (private and public vehicles are also
accounted for), where their speeds are affected by the traffic flow, traffic signals (Hans et al. 2015)
or the density of the surrounding traffic (Toledo et al. 2010).

In general, bus-following models focus on the interactions between buses, while traffic-following
models focus on the interactions between buses and the broader traffic system. While the bus sched-
ule exists in both bus-following and traffic-following models, they do not attempt to capture the
schedule-following behaviour of buses. In a conventional bus schedule, drivers aim to visit each of
their stops at a set time (Chen, Liu, and Xia 2005). If they are behind schedule, they adjust their speed
accordingly. This paper presents the first bus simulation that both captures the schedule-following
mechanism, while also being able to account for other important phenomena (as observed from the
Automatic Vehicle Location (AVL) data). The theoretical properties of themodel include: (1) individual
(bus) drivers whose aim is tomeet their own schedules; (2) bus bunching that occurs when the passen-
ger demand is large and buses are delayed while passengers embark and (3) vehicle overtaking and
leapfrogging that occurs alongside bus bunching. We define bus bunching as the situation when two
or more buses arrive at the same bus stop at the same time. Leapfrogging is a special variant of bus
bunching that occurswhen two vehicles cannot separate fromeach other overmultiple stops, e.g. one
bus overtakes another and is later overtaken again by the same bus.

Themain contribution of this paper is the methodological development of the schedule-following
bus simulation model. This innovative approach is one of the first successful models that is capa-
ble of accounting for the combination of schedule following, bus bunching and leapfrogging. The
paper also provides a numerical analysis using synthetic data and a calibration of the model using
observed AVL and Smart Card data. Whilst there are clear limitations to the work as a transport
planning/management tool, for example the absence of traffic or a realistic transport network, the fun-
damentalmechanisms that drive themodel are novel and canbe incorporatedwith othermechanisms
such as traffic-following behaviour to create a more realistic simulation of bus operation.

Thepaper is structured as follows. Section 2 reviews the current state of the art in thebus simulation
literature. Section 3 details the motivation to replicate the actual dynamics of buses as observed from
AVL data. Section 4 describes the model development process. Section 5 provides some numerical
results of the proposed model in comparison with existing models in the literature. Section 6 illus-
trates the calibration of the proposed model. Finally, Section 7 concludes the study, summarises the
contributions and suggests some future research directions.

2. Literature review

Models of bus operations are commonly used to predict future system states and to simulate control
strategies (Eberlein et al. 1998; Hickman 2001; Sánchez-Martínez, Koutsopoulos, andWilson 2016). The
mostpopularmodel type is static,where travel timeor travel speedoneach link is assumed tobedeter-
ministic (Eberlein et al. 1998). It is also commonly assumed that bus travel time follows a probabilistic
distribution (Daganzo 2009). A recent paper by Sánchez-Martínez, Koutsopoulos, and Wilson (2016)
proposes a dynamic factor function to translate the static bus travel time and demand into time-
dependent functions tobeconsidered inbusholdingcontrol strategies. Although thosemodelsdonot
yet consider flowdynamics under different system states, somemathematicalmodels have attempted
to simulate interactions between other buses, with passengers andwith the surrounding traffic. These
latest advances can be classified into CA models (Luo et al. 2012; O’loan, Evans, and Cates 1998;
Chowdhury and Desai 2000; Jiang, Bin Jia, and Wu 2003), bus-following models (Nagatani 2000; Hui-
jberts 2002; Tanget al. 2012a;Nagatani 2001;Hill 2003) and traffic-followingmodels (Toledoet al. 2010;
Hans et al. 2015; Cats et al. 2010).

CA models use discrete variables to model the dynamical properties of the bus system (O’loan,
Evans, and Cates 1998). The road network is generally divided into a regular grid of cells in a discrete
one-dimension lattice, where each cell can take a binary state (1 or 0) representing the presence of
a bus on the cell, while time is discretised into fixed time steps. CA models generally aim to describe
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the dynamics of bus operations from rule-based local behaviours of individual buses: acceleration,
deceleration, stopping and running, without many interactions between multiple vehicles. CA mod-
els have been adapted for simulating bus route operations (O’loan, Evans, and Cates 1998; Chowdhury
and Desai 2000) and have recently been enhanced by incorporating vehicle capacity (Jiang, Bin Jia,
and Wu 2003) and open boundary conditions (Luo et al. 2012). While CA models are simple to imple-
ment and efficient in performance, they rely on a discretisation of the continuous spatial and temporal
spaces. They also aim tomodel the bus operation from the dynamics of individual vehicles rather than
emphasising the flow dynamics of the system.

Taking inspiration from car-following models, e.g. Tang et al. (2012b), bus-following models
(Nagatani 2000; Huijberts 2002; Tanget al. 2012a; Nagatani 2001; Hill 2003) are built on the interactions
betweenmultiple buses, in particular on the logic that buses follow each other. The first bus-following
models (Nagatani 2000; Huijberts 2002; Tang et al. 2012a)modified the car-following velocity function
fromNewell (1961) andWhitham (1990) to capture the behaviour of bus drivers, who usually speed up
when the headway (or time gap) between buses is large and slow down otherwise. An additional term
in the optimal velocity function was introduced to represent the passenger boarding time at a bus
stop. The bus-following model was later modified to become a time-headway model (Nagatani 2001;
Hill 2003), where a desired headway was introduced instead of the optimal velocity. Thesemodels are
the best representation of a highly frequent system, where drivers try to maintain a regular headway
with leading buses. However, the follow-the-leader logic means that the well-known bus bunching
phenomenon (Sun and Schmöcker 2018) is treated similarly to a traffic crash and will never occur in
the model.

Traffic-following models of bus routes often derive the dynamics of bus operations from the inter-
action with the surrounding traffic, under the rationale that buses are a part of the overall traffic
flow. These models usually separate a link model, where buses follow the traffic, and a node model
where buses dwell for passengers boarding and alighting. Cats et al. (2010) developed their model
as a component of a traffic-following simulation model. The model of Toledo et al. (2010) estimated
a bus average speed based on the current, maximum and minimum traffic density. At stops, passen-
ger arrivals follow a Poisson distribution and passenger alighting follows a Binomial distribution. Hans
et al. (2015) explicitly estimated bus travel timebased on traffic signals and traffic flows. The dwell time
and the number of passengers are stochastically generated from Exponential or Poisson distributions.
While assuming that the travel timeon links is deterministic, Fonzone, Schmöcker, and Liu (2015) intro-
duced the non-uniformity dynamics of passenger arrival to bus stops and concluded that the arrival
patterns can worsen or improve bus bunching. Various traffic microsimulation packages, such as Aim-
sun (Barcel and Casas 2005), Vissim (Fellendorf and Vortisch 2010) and SUMO (Behrisch et al. 2011),
also aim to include buses in traffic simulation.

However, while interactions betweenmultiple buses (e.g. bus following behaviour in bus-following
models), between buses and surrounding traffic (e.g. traffic-following or traffic microsimulation mod-
els) and between buses and passengers (all models) are all well studied, this is not the case for the
interactions between buses and their schedules. Chen, Liu, and Xia (2005) proposed a bus arrival pre-
diction method based on the Kalman Filter algorithm where the driver ‘schedule recovery’ behaviour
is considered. Schedule recovery was defined as the effort from bus drivers to adhere to the sched-
ule, similar to the schedule-following behaviour described in this paper. Chen, Liu, and Xia 2005
found empirically that schedule recovery behaviour could be observed in half of the bus trips in
North Eastern United States. Ji, He, and Zhang (2014) measured bus drivers’ schedule-following
behaviours and their impacts on bus reliability using automatic vehicle location data. Wu, Liu, and
Jin (2018) developed a bus holding control at stops that incorporates drivers’ schedule recovery
behaviour.

The bus route model to be proposed in this paper departs from the existing literature by captur-
ing the ‘schedule-following’ dynamics of the bus under a conventional scheduled-based system in a
microsimulationmodel of a bus route. The proposedmodel aims to reproduce the actual dynamics of
the bus route, as observed from bus trajectories in real AVL data.



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1591

Figure 1. Observed bus trajectories (bold line) compared with the schedule (dashed line) from (a) weekday and (b) weekend.

3. Problem description

Figure 1 shows the observed trajectories of buses on Route 555 in Brisbane, Australia, on a typical
weekday and a weekend. Route 555 is a busy 12-stop bus route connecting Loganholme to Brisbane
CBD. Buses on Route 555 operate on segregated busways, so there is no impact of the surrounding
traffic on the bus operation. The AVL data include the scheduled (dashed line) and actual (bold line)
arrival and departure times of each bus.

Route 555 operates with the same scheduled travel time of 45 minutes and scheduled headway of
15minutes during bothweekdays andweekends. Figure 1(b) shows that duringweekends, drivers are
able tomaintain good on-time performance at themajority of stops. It shows that drivers try to adhere
to the schedule without any dynamic control. However, there is a heavy delay during weekdays (1a).
Recall that Route 555 operates on a busway, this delay be the result of excessive passenger demand.
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Figure 2. Observed bus bunching at Route 555.

Bus bunching is also a problem on high frequency bus routes such as Route 555. Figure 2 shows an
example of the phenomenon. When bus L is late, the following bus (bus F) tends to travel faster due
to having lower passenger demand. Both bus bunching and leapfrogging can be clearly observed in
this situation. After the two buses are bunched, bus F overtakes bus L, resulting in the two buses being
unable to separate from each other. As bus F overtakes bus L, it faces a heavy passenger demand
awaiting for bus L. Bus F may now be the slow one due to this heavy demand and may be overtaken
by bus L at downstream stops. This paper aims to capture these dynamics, which are classified as

• Follow-the-schedule: Buses try to adhere to schedules as much as they can
• Bus bunching: Bunching may occur when a bus is late and the following bus catches up with it
• Leap-frogging: As bus bunching occurs, the two bus cannot separate from each other.

While bus bunching has been discussed in the literature (Abkowitz and Tozzi 1987; Fonzone,
Schmöcker, and Liu 2015), existing studies fail to model the follow-the-schedule dynamics of buses.
A model that replicates the actual dynamics of the bus system will provide a better understanding of
the bus operations and a better simulation of bus routes.

4. Schedule-followingmodel formulation

This section aims to propose the schedule-following bus route model that captures the three afore-
mentioned dynamics.

4.1. Notation

N: Number of buses
j: Index of vehicle (j = 1 . . .N)

m: Index of bus stop (m = 1 . . .M)

M: Number of bus stops
ω: Slack time
H: Scheduled headway



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 1593

C: Bus capacity
Lm−1: The distance between stopm−1 and stopm
vmax: Maximummean speed
vmin: Minimummean speed
taj,m: Arrival time of bus j at stopm

tdj,m: Departure time of bus j from stopm
δtj,m: Time headway or difference between the departure time of two adjacent buses from the

same stopm
Dj,m: Dwell time of bus j at stopm for passenger boarding and alighting
θ1, θ2, θ3: Parameters set for estimating Dj,m
$j,m: Time difference between actual and scheduled departure time of bus j at stopm
τj,m: Scheduled departure time of bus j from stopm
Bj,m: Number of boarding passengers to bus j at stopm
Aj,m: Number of alighting passengers from bus j at stopm
Occj,m: Occupancy of bus j leaving stopm
Im(t): Number of passengers waiting at stopm at time t

4.2. Assumptions

To develop the follow-the-schedule bus route model, the following assumptions are made:

• The bus fleet is homogeneous with similar capacity.
• Buses are allowed to freely overtake each other when possible: this assumption is tomake sure that

the leapfrogging phenomenon can be reproduced.
• Buses have two doors to allow simultaneous boarding and alighting.

4.3. Model formulation

We consider a general bus route on an one-dimensional lattice with open boundary conditions, as
illustrated in Figure 3. Each bus travels from Stop 1 to M. The distance between stop m−1 and m is
Lm−1. The arrival time taj,m of bus j to stopm is a function of the departure time tdj,m−1 from stopm−1
and the travel time between stopm−1 and stopm:

taj,m = tdj,m−1 + Lm−1
vj,m−1

, (1)

where vj,m−1 is themean speed of bus j (j ∈ [1 . . .N]) between stopsm−1 andm. A bus driver operates
the bus according to its lateness/earliness to the schedule at the previous stop, where the schedule
adherence information is given to the driver each time the bus reaches a bus stop. If the bus is behind
the departure schedule at the previous stop, the driver will operate with highmean speed, and other-
wisewith lowmean speedwhen aheadof the schedule.We assume that thismean speed is dependent
on the schedule adherence $j,m−1 at the last visited stopm−1:

vj,m−1 = V($j,m−1). (2)

We modify the formulation of the optimal speed function V($j,m−1) from the bus-following model
proposed in Nagatani (2001) and later discussed in Hill (2003). This optimal speed function is differ-
ent to those in the bus-following models (Nagatani 2000, 2001; Huijberts 2002). These models use a
modified optimal speed function that is similar to that used in a car-following model. Thus the bus
dynamics are based on the distance between them (time or space headway) and a predefined critical
headway. The proposed schedule-following model, instead, uses the ratio between schedule adher-
ence $j,m and scheduled headway H to define the speed of buses. In general, buses in the proposed
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Figure 3. Schematic illustration of the bus route

schedule-following model do not ‘see’ other buses but only operate according to its own schedule.
This formulation uses the same number of variables as in Nagatani (2001) and Hill (2003). V($j,m−1)
can be calculated in the proposed schedule-following model as follows:

V($j,m) = vmin + (vmax − vmin)
tanh($j,m/H) + 1

2
, (3)

where vmin and vmax are the minimum and maximum mean speeds, respectively. H is the sched-
uled headway between buses. Parameters vmin and vmax can be defined as deterministic or traffic-
dependent variables, where the bus cannot travel slower or faster than the surrounding traffic.
Although the data being used in this project are from a busway system with segregated right of way,
these parameters are included to make the model more generalisable. Practitioners may incorporate
up-to-date traffic data to dynamically calibrate these parameters using data assimilation methods,
such as a Bayesian Filter (Kalnay 2003) or a Particle Filter (Kieu, Malleson, and Heppenstall 2019). In
this paper, parameter calibration is performed offline to adjust the values of vmin and vmax tominimise
the difference between estimated velocity V($j,m−1) and the observed velocity. We will discuss the
parameter calibration in Section 6.

The hyperbolic tangent factor is a smooth, spread out function that is used to vary the value of
V($j,m) between vmin (when the bus is ahead of the schedule) and vmax (when the bus is behind the
schedule). The schedule adherence $j,m is defined as the difference between the actual departure
time tdj,m and scheduled departure time τj,m

$j,m = tdj,m − τj,m. (4)

In this paper, τj,m is calculated using the minimum time it takes to travel between stops m−1 and
m, plus a certain amount of slack time ω to accommodate for dwell time and other uncertainties.
Parameter ω is a part of the network settings, similar to parameters L,M and N.

τj,m = τj,m−1 + Lm−1
vmax

+ ω. (5)

The departure time of bus j from stopm is calculated from the arrival time taj,m plus the time spent at
stops for passenger boarding and alighting, or in other words the dwell time Dm.

tdj,m = taj,m + Dj,m. (6)

Dj,m is calculated as a function of the number of boarding and alighting passengers:

Dj,m = θ1 + max{θ2 × Bj,m, θ3 × Aj,m}, (7)

whereBj,m andAj,m are thenumber of boarding and alightingpassengers tobus j at stopm. Theparam-
eter set [θ1, θ2, θ3] represents fixed values for vehicle stopping and starting (θ1) and the time spent for
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passenger boarding (θ2) and alighting (θ3). For a single door bus system, where passengers alight first
then board the bus, the following equation can be used:

Dj,m = θ1 + θ2 × Bj,m + θ3 × Aj,m. (8)

These formulations of the dwell time are consistent with many studies in the literature, such as Bertini
and El-Geneidy (2004) and the TCQSM (TRB 2013).

The number of alighting passenger can be estimated as

Aj(m)) = Occj(m− 1)× ρm, (9)

whereOccj(m− 1) is the occupancy or the number of passenger inside bus j prior to stopm. ρm is the
probability of a random passenger to alight at stopm.

The number of boarding passengers Bj,m is stochastic because passenger arrivals at bus stops are
random. Bj,m depends on the time gap between arrival time taj,m and departure time of the last vehicle
tdj−1,m visiting stop m. The passenger arrival process is modelled as a homogeneous Poisson process
with an average arrival rate λm. The use of the Poisson process to model passenger arrivals is con-
sistent with many previous studies (Toledo et al. 2010). The passenger arrival process is random and
independent from the process of vehicle arrivals, which can be expressed in the followingAlgorithm1.

Algorithm 1: Poisson arrival process

1 SetM ◃ Number of stops
2 Initialise Simulation_step=0.1 ◃ Set the simulation step size
3 Initialise Events = Total_study_time / Simulation_step ◃ Initialise the total possible events
4 for s=1 toM do
5 ◃ Loop from the first to the last stop
6 arrival_probability = Random[0, 1]
7 ◃ A passenger will arrive if the arrival probability is large enough
8 Set Events(s) = (arrival_probability > λ× Simulation_step)
9 end

10 return Events

Here, Events is amatrix of passengers with arrival times at each stop.We define Im(t) as the count of
available passengers in Eventswho have arrived at stopm at time t and have not yet boarded any bus.
Thenumber of boardingpassengersBj,m is theminimumbetween thenumber of available passengers,
who arrived at stop m before time taj,m, and the residual capacity of bus j after alighting C + Aj,m −
Occj,m, where C is the capacity

Bj,m = min{Im(taj,m), C + Aj,m − Occj,m}. (10)

Note that the number of boarding passengers depends on the time gap between arrival time taj,m of
the current bus, the arrival time of the last vehicle taj−1,m visiting stopm, and the remaining passengers
at stopm. This is equivalent to an assumption that no passengers arrive during the dwelling process
and is similar to many other studies in the literature (Daganzo 2009; Cats et al. 2010). This assumption
can be relaxed by incorporating the boarding process recently introduced in Wu, Liu, and Jin (2017).
After the boarding process of vehicle j at stop m, the number of left-over passengers in the residual
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queue that cannot board the bus j can be updated as follows:

Im(taj,m) = Im(taj,m)− Bj,m. (11)

The occupancy of bus j leaving stopm then can be updated after the departure time tdj,m:

Occj,m = Occj(m− 1) + Bj,m − Aj,m. (12)

Finally, the dynamical equation of the proposed model can be rewritten as

tdj,m = tdj,m−1 + Lm
vj(m− 1)

+ Dj,m. (13)

Equation (13) defines the departure time of bus j from stopm as a function of the departure time from
the stopm−1, plus the travel time between stopsm−1 andm and the dwell time at stopm.

To simplify the modelling process, many of the existing bus route simulation studies assume that
no overtaking occurs in the system, for a detailed discussion see Wu, Liu, and Jin (2017). However,
without theovertakingbehaviour itwouldnotbepossible to account for leap-frogbunching.We focus
on systems where overtaking is allowed. The vehicles are allowed to freely overtake each other in the
proposed schedule-following model. As a vehicle j overtakes its previously leading vehicle j−1, we
simply swap the indexes of these two vehicles. This essentially means that the two vehicles swap their
schedule. Recall in Equation (3) that their speeds only dependon the schedule. Vehicle index swapping
has beenmadepossible due to the fact that thepassenger arrival process (Algorithm1) is independent
of the vehicle arrivals, and Im(t) only depends on the arrival time of any bus at stop j.

The next section provides numerical examples and evaluates the performance of the proposed
model.

5. Model performance

To demonstrate the performance and characteristics of the proposed schedule-following model, we
perform some rigorous numerical sensitivity analysis and compare it to the existing bus-following
(Nagatani 2001; Hill 2003) and traffic-following (Toledo et al. 2010; Cats et al. 2010) models.

5.1. Bus-followingmodel formulation

The bus-following model is governed by a dynamical equation as described in Hill (2003):

tj,m = tj,m−1 + λγ δtj,m−1 + L
Vj,m−1

, (14)

where tj,m is both the arrival and departure time of bus j at stopm; δtj,m = tj,m − tj+1,m is the time head-
way. Note that unlike the proposed schedule-followingmodel, there is no separation of the departure
time and arrival time at a bus stop. γ is the time it takes for each passenger to board. λγ δtj,m−1 is the
estimation of dwell time. The mean speed Vj,m−1 is calculated using the following velocity function:

V(δxj) = vmin + (vmax − vmin)×
tanh[ϕ(δt − tc)] + tanh(ϕtc)

1 + tanh(ϕtc)
, (15)

where tc is the safe (critical) headway between two buses. ϕ acts as a spread-out parameter for the
hyperbolic tangent factor.
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5.2. Traffic-followingmodel formulation

The traffic-following model uses a similar dynamical equation to Equation (13) (Toledo et al. 2010). Its
mean speed is calculated using the following function:

f (n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vmax k < kmin,

vmin + (vmax − vmin)×
[
1−

(
k − kmin

kmax − kmin

)a]b
k ∈ [kmin, kmax],

vmin k > kmax,

(16)

where k is the link density, kmin and kmax are the minimum and maximum density thresholds, a and b
are parameters. The traffic-following model (Toledo et al. 2010) formulates the dwell time Dj,m as

Dj,m = β1 + max(PT frontj,m , PT rearj,m ) + β2 × δ
bay
j + β3 × δfullj,m + νj,m, (17)

where PT frontj,m and PT rearj,m are the total passenger service time at the front and rear doors, respectively.

δ
bay
j equals 1 if the bus stop is a bay, and 0 otherwise. δfullj,m equals 1 if the stop is completely occupied
and 0 otherwise. β1 is the dead time required for door closing and opening; β2 is the delay due to
approaching a bay stop; β3 is the delay due to approaching a fully occupied stop and νj,m is an error
term. The passenger service times PT frontj,m and PT rearj,m can be calculated as

PT frontj,m = α1 × pfront × Aj,m + α2 × Bj,m + α3 × δcrowdedj,m × Bj,m, (18)

PT rearj,m = α4 × (1− pfront)× Aj,m, (19)

where pfront is the fraction of passengers that alight from the front door. α1 and α4 are the time for
each passenger to alight from the front and rear doors, respectively. α2 is the time for each passenger
to board a uncrowded bus, and α3 is the additional time for each passenger to board a crowded bus.
δcrowdedj,m equals 1 if the bus exceeds the number of seats Cs, and 0 otherwise. The number of boarding
passengers Bj,m is estimated by a Poisson process, while the number of alighting passengers Aj,m is
estimated by Equation (9).

5.3. Parameter settings

Table 1 shows the parameter settings used in the numerical sensitivity analysis for the three mod-
els. The parameters for the time required for boarding, alighting and door closing are adopted from
Bertini and El-Geneidy (2004), which equal 3.6, 0.85 and 5.8 respectively. The global network setting
parameters are: L = 0.5 km,M = 20, N = 6, ω = 0.3 and H = 5min for all models.

Note that for our comparison studywe use the same passenger arrival process as in Algorithm 1 for
estimating thenumberof arrivedpassengers Im(t)andboardingpassengersBj,m for both the schedule-
following and traffic-following models. The reasons for this are first to enable a consistent and fair
comparison, and second, to enable vehicle overtaking in both the proposed schedule-following and
traffic-following models.

For both the schedule-following and traffic-following models, we assume that the probability of
alighting at each stop ρm is fixed within the same time period. Parameter ρm linearly increases from 0
→ 1 asm increases from 1→ M, so that passengers are more likely to alight downstream of the bus
route, and all on-board passengers would alight at the last stop M. The bus-following model ignores
the effect of alighting passengers, but uses the same arrival rate λ as the other two models. Table 1
shows the parameters used in each model under comparison.

The following sections evaluate the three bus route models in two scenarios where (1) there is no
perturbation introduced (nothing disrupts the buses as they travel between stops and the passenger
arrival rate is deterministic) and (2) random perturbations are introduced at every link.
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Table 1. Parameter settings for the three bus route models.

Schedule-following Bus-following TF TF (cont’d)

vmax = 60 km/h vmax =60 km/h vmax = 60 km/h β3 = 0
vmin = 40 km/h vmin = 40 km/h vmin = 40 km/h δ

bay
j = 0

θ1 = 5.8 s ϕ = 1 k = 0.5 δfullj,m = 0
θ2 =3.6 s tc = 1min kmax = 1 νj,m = 0
θ3 = 0.85 s γ = 3.6 s kmin = 0 α1 = 0.85 s
λ = 1 pass/min λ =1 pass/min a = 1 α2 = 3.6 s
C = 80 passengers b = 1 α3 = 3.6 s

β1 = 5.8 s δcrowdedj,m ∈ [0, 1]
β2 = 0 pfront = 0.5

λ = 1 pass/min Cs = 40 passengers

TF, traffic-following model.

Figure 4. Sensitivity of λ: (a) schedule-following model, (b) bus-following model and (c) traffic-following model.

5.4. Study cases

5.4.1. Scenario 1: no perturbation
This section compares the three models being studied without adding any random perturbations to
their operation. This demonstrates the operational characteristic of the models. Figure 4 shows the
impact of λ (the number of passengers perminute) on bus trajectories from the (a) schedule-following
model, (b) bus-followingmodel and (c) traffic-followingmodel. The bold lines are trajectories of buses,
where a darker colour means a lower mean speed. The dashed lines are the scheduled arrival times at
stops.

All three models capture the fact that buses experience more delays as λ increases. The following
are the two main differences between the models:
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• In the proposed schedule-following model, drivers try to adhere to the schedule by adapting
their speeds, while drivers in the other models do not consider a predefined schedule. Buses
in the schedule-following model speed up when behind schedule and slow down otherwise,
while buses in bus-following and traffic-following models maintain constant speeds regardless
of the on-time performance. The schedule-following behaviour is consistent with the observation
in Figure 1.

• The leapfroggingphenomenon at larger values ofλ is captured in theproposed schedule-following
and traffic-following models as a result of the Poisson-based stochastic passenger arrival process.
While the modelling results at λ = 1 passenger/s are similar for the schedule-following and traffic-
following models, the latter shows significantly more bunching at λ = 2 passenger/s than the
former. This is because the proposed schedule-following model has a speed adaptation feature
where drivers try to speed up to adhere to schedules, while the speed in the traffic-followingmodel
depends on the value of traffic density k. On the other hand, a larger passenger arrival rate does not
create disturbances in thebus-followingmodel because thedeterministic passenger arrival process
delays every bus equally.

Figure 5 demonstrates the speed adaptation feature of the proposed model (Figure 5a) compared
to the bus-following model (Figure 5b) and traffic-following model (Figure 5c). On the left side of
Figure 5(a and b), buses are constrained by a narrow speed range [vmin, vmax = [45, 55] km/h of the
traffic, whereas on the right side, the constraint is very large. Traffic-following is a special case, where
the bus speed is calculated using the link density k. Therefore, the speed range [vmin, vmax] on both
sides of Figure 5(c) is [10,90], but the left side has high traffic density (k = 0.5) while the right side has
no traffic density (k = 0). In practice, we can say that the right side of Figure 5 simulates a systemwith
dedicated rights of way, such as busways or bus lanes, where buses do not interact with the surround-
ing traffic. The left side of Figure 5 on the other hand represents a systemwith shared rights-of-way. λ
equals 1.5 passenger/s in this experiment.

In the left side of Figure 5, the narrow range of possible speeds causes limited speed variation
between the three models. All three models show a similar colour in their trajectories. There are sig-
nificant differences in vehicle speeds on the right side of Figure 5 because in those experiments bus
speeds can vary between 10 and 90 km/h. Buses in the bus-following (Figure 5b) and traffic-following
(Figure 5c) models do not change their operating speed. They almost always travel at the maximum
speed.Whereas buses in the schedule-followingmodel adapt their speed to adhere to the schedule. By
comparing the two sides of Figure 5(a), we notice that the overall performance of the bus route is bet-
ter if there is the freedom to adapt bus speeds for schedule adherence. This is similar to practice, where
buses ondedicated rights-of-way are better able to keep to their schedules thanbuses on shared roads
due to being unconstrained by the surrounding traffic (Chen, Yushi Zhang, and Guo 2009).

Anotherway to evaluate the twomodels is to use aphasediagramof systemstates. States here refer
to the headway between vehicles: whether the headway is uniform; unstable; or if buses are bunched.
Simulations are executed with different values of λ and H using the three models, and repeated 10
times to reducenumerical instability. A 4-regionPhasediagram is illustrated in Figure 6. Thedefinitions
of these phases follow Luo et al. (2012).

• Phase region I: Theuniformstate,where all simulatedheadways aremore thanhalf of the scheduled
headway. Formally, ∀j,m : δtj,m > H/2 with j ∈ [1 . . .N] andm ∈ [1 . . .M], whereH is the scheduled
headway. In this phase, busesmaintain a regular headway. Schedule-following and traffic-following
models exist in this phase when the demand is low, while the bus-following model always stays in
this phase.

• Phase region II: The lack of capacity state,where the simulatedheadways are stillmore thanH/2, but
some buses reach full capacity. Formally, ∀j,m : δtj,m > H/2 but ∃j,m : Occj,m == C. When both λ

andH are high, most of the buses will reach their capacity. While the headway between them is rel-
atively uniform because they share the sameworkload, there will be passengers who cannot board
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Figure 5. Impact of speed constraints on on-time performance: (a) schedule-following model, (b) bus-following model and (c)
traffic-following model.

a bus. This region appears only in the proposed schedule-following and traffic-following models
thanks to the existence of vehicle capacity.

• Phase region III: The unstable state, where at least one simulated headway δtj,m drops below half of
the scheduled headway, but more than the critical headway tc. Formally, ∃j,m : H/2 > δtj,m and
∀j,m : δtj,m > tc. This region appears in the proposed schedule-following model with a V-shape
around region IV. The traffic-following model also enters this phase occasionally, but Phase region
IV is a lot more common.

• Phase region IV: The congested state, where bus-bunching occurs. Formally, ∃j,m : δtj,m < tc. This
region only appears in the proposed schedule-following and traffic-following models.

The bus-following model always yields the uniform state in this experiment, due to the model’s
deterministic nature. Even at highdemandand frequency, busesmaintain the sameheadwaybetween
each other, which results in the system always being in Phase region I.

The four phase regions are consistent with Luo et al. (2012) and the observations using real data
in Liu and Sinha (2007). At low demand, both schedule-following and traffic-followingmodels are sta-
ble, and they become more unstable as λ increases. The traffic-following model appears to be quite
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Figure 6. Phase diagram analysis of (a) schedule-following model, (b) bus-following model and (c) traffic-following model.
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random, because Phase IV also appears when the scheduled headway H is large and the passenger
demand λ is low. Using the same system of randomness as the traffic-followingmodel (a Poisson pro-
cess), the performance of the proposed schedule-following model seems to be more resilient due to
the speed adaptation feature.

5.4.2. Scenario 2: randomperturbation at every link
This scenario evaluates the stability of bus systemwhen the travel time between stops includes a ran-
dom perturbation. The purpose of this experiment is to evaluate the stability of the three bus route
modelswhen the observed data contain noise, orwhen the system is exposed to randomdisturbances
in operation such as random travel time between links that might be caused, for example, by the sur-
rounding traffic. The dynamical equations of the proposed schedule-following and traffic-following
models now read:

tdj,m = tdj,m−1 + Lm
vj(m− 1)

+ Dj,m + ξ × rj (20)

and similarly for the bus-following model:

tdj,m = tdj,m−1 + λγ δtj,m−1 + L
Vj,m−1

+ ξ × rj (21)

where rj is a uniformly distributed random number between [−1, 1] and ξ is the perturbation magni-
tude. ξ = 0means noperturbation,while ξ = 1means that thedeviation from the scheduleddispatch
time is [−1, 1] minute. Figure 7 shows the bus trajectories from the three models when ξ = 0.1. This
perturbation setting is consistent with Hill (2003).

As ξ = 0.1, the deviation is only between [−6, 6] seconds at each stop, which is hardly notice-
able in practice. It is expected that the models should show relatively similar simulated trajectories
as in Figure 4. However, only the proposed schedule-following model (Figure 7a) exhibits unno-
ticeable differences to the bus trajectories. This is because, as with real practice, drivers can easily
recover from small deviations by adapting their speeds. Conversely, the bus-following (Figure 7b)
and traffic-following models (Figure 7c) show much less realistic trajectories under noise, where the
small perturbations evolve into significant service disturbances especially at large λ. Figure 7(c) shows
that bus bunching now appears even at low passenger demand (λ = 1). These results are further
investigated in the phase diagram in Figure 8.

The proposed schedule-following model shows a very similar phase diagram to that produced in
the first scenario (Figure 6), with slightlymore stochasticity due to the randomperturbation. However,
major changes in the phase diagram can be found in the bus-following model, where the unstable
(Phase III) and congested state (Phase IV) can now be found. The traffic-following model shows even
more stochastic results than before, as the Phase I (stable) and Phase IV (congested) are occasionally
mixed up when λ ≈ 0.6 passengers/min.

5.5. Model performance: discussion

Two scenarios have been developed to evaluate and compare three bus route simulationmodels: bus-
following, traffic-following and proposed schedule-following. Figures 4–8 illustrated the results. The
two scenarios showed that theproposedmodel captures the three important bus operationdynamics:

• Buses adhere to schedules when the demand is low, but they cannot do so when the demand is
large. When bus speed is not constrained by traffic, better schedule adherence can be obtained.

• A late bus may cause bus bunching when the following bus catches up with it.
• The leapfrogging phenomenon occurs as two or more buses cannot separate from each other.

There are two main differences between the bus-following model and the proposed schedule-
followingmodel. First, the bus-followingmodel is deterministic, meaning that it is always in the stable
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Figure 7. Bus trajectories after random perturbations: (a) schedule-following model, (b) bus-following model and (c) traffic-
following model.

phase (Phase I, Figure 6), until some random noise is introduced (Figure 8). Conversely, the proposed
schedule-following model is stochastic and is able to capture four phases of a bus operation with or
without randomnoise in the system. Second, the bus-followingmodel assumes that a bus would slow
down when approaching another bus, similar to a collision-free car-following model. This means that
the bus bunching phenomenon, which is a common occurrence in real systems, will not occur in the
standard bus-following model. On the other hand, the proposed schedule-following model captures
both bus bunching and leapfrogging phenomena.

Compared to the traffic-followingmodel, theproposed schedule-followingmodel shows twomajor
differences. First, the traffic-following model aims to model buses as a component of the traffic sys-
tem. Cats et al. (2010) use a traffic simulationmodel as the traffic environment, and Toledo et al. (2010)
use traffic density data to model the traffic state on the links where buses are operating. However,
this explicit approach requires a substantial amount of traffic data or a comprehensive traffic model
(Cats et al. 2010) to account for the surrounding traffic. It is very challenging to collect traffic data for
every bus link in practice because data are often only available at major road links, while buses tend
to also cover minor links to serve residential areas. The proposed schedule-following model, on the
other hand, can model the bus speed under the influence of traffic conditions through the parame-
ters vmax and vmin. This is of course a vast simplification of the broader traffic patterns, but it provides
a simple way to calibrate the model without traffic data. Second, the proposed schedule-following
model is a better candidate for simulating a conventional schedule-based bus system. Buses in the
schedule-following model try to maintain a predefined schedule, similar to bus drivers in practice.
This is best shown in Figure 7, where buses in the schedule-followingmodel can recover a schedule at
low demand, and buses in the traffic-following model become bunched even with low demand after
a minor perturbation.



1604 LE-MINH KIEU ET AL.

Figure 8. Phase diagram analysis of (a) schedule-following model, (b) bus-following model and (c) traffic-following model under
small perturbation.
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It is clear that theproposed schedule-followingmodel captureswell thedynamics in a conventional
schedule-based bus system.Wewill show in the next section how it is calibrated to the observed data.

6. Model calibration

This section calibrates the proposed schedule-followingmodel against the observed Automatic Vehi-
cle Location (AVL) and Smart Card data from Route 555 in Brisbane, Australia. It aims to demonstrate
that the proposed model is capable of reproducing reality as seen from observations. The schedule-
following model is run multiple times and the distribution of simulated vehicle headway between
buses is collected. These are then compared to the observed headway from the AVL data. Recall that
Route 555 operates on a busway, so there is no impact from traffic. We only calibrate the proposed
schedule-following model, not the traffic-following and bus-following models, because there are no
traffic data that can be used to calibrate the traffic-following model, and because the deterministic
bus-following model has no variation in vehicle headway to get a distribution.

6.1. Data description

This paper uses 4 months of AVL and Smart Card data from July to October 2013. Each AVL record
includes information about each visit to a bus stop, including route number, trip ID, vehicle ID, sched-
uled departure time, observed arrival time and observed departure time. The time headway between
vehicles is estimated as the difference between the departure time from the same stop of two adjacent
buses. In addition to the AVL data that provides the arrival and departure times, the calibration also
uses the Smart Card data for the same route, giving the number of boarding and alighting passengers
at each stop. Each Smart Card record includes boarding and alighting locations, time stamps as well as
a hashed unique ID of the smart card used for the journey. Only working days are used for calibration.
The study period is 7:15 AM to 9:15 AM on the inbound direction, thusN equals 9,H equals 15minutes
andM equals 12 stops.

6.2. Calibration problem formulation

Parameter calibration is an optimisation problem to minimise some error index PI(π) over all π ∈ Rk .
A solution π = (π1,π2, . . . ,πk) refers to a set of model parameters and k denotes the number of
parameters in this set. Let π∗ denote the optimal set of parameters, that is:

π∗ = argmin PI(π), π ∈ Rn. (22)

Equation (22) is equivalent to finding π∗ such that PI(π∗) ≤ PI(π) ∀X ∈ /, where / is a constrained
parameter space such that/ ∈ Rk . The error index PI(π) is the difference betweenmodel outputs and
observed data.

The challenges in this calibration problem come from the fact that the schedule-followingmodel is
stochastic, i.e. the same solutionπ mayyield different realisation PI(π). To reduce this stochastic effect,
we evaluate each solution π a hundred times (replications) and compare the distribution of outputs
with the distribution of the observed data. Solving this optimisation problemby hand is tedious, sowe
propose the use of a population-based Monte Carlo learning algorithm, based on the Cross-Entropy
Method (CEM) (Rubinstein 1999) for optimising the parameters of the model.

CEM originated from the field of rare event simulation, where even small probabilities need to be
estimated. It has been developed into a combinatorial multi-extremal optimisation (Rubinstein 1999).
Formally, CEM maintains and develops a probability distribution over a generation of solutions for an
optimisation problem (model parameters in this case). At each iteration, new solutions are drawn from
this distribution and evaluated. After ranking the solutions according to a predefined performance
index, the best ones are selected to develop an improved probability distribution of the parameters,
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which will then be used to create a new generation of solutions for the next iteration, until certain cri-
teria aremet (a.k.a. convergence). CEMhas been chosen over other popular optimisationmethods such
as Genetic Algorithms (Heppenstall, Evans, and Birkin. 2007), because its probabilistic nature facilitates
the calibration of stochastic models (Ngoduy andMaher 2012). Interested readers may refer to Rubin-
stein (1999) for a more detailed account of the CEM. Pseudo-code for CEM for the Normal distribution
is also included in Appendix A of this paper.

The proposed schedule-following model is driven by five parameters: [vmin, vmax, θ1, θ2, θ3]. These
five parameters will be calibrated in this section. Parameter λ is estimated from the Smart Card
data by taking the mean number of boarding passengers per minute over the studied period. Other
parameters L,ω,M,H are taken directly from the AVL data. The objective function is formulated as

min z = E
[
1
M

M∑

m=1

√√√√
2H∑

h=0

(P(hπ ,m = hm)− P(h̃m = hm))2
]

(23)

subject to:

πmax
j ≥ πj ≥ πmin

j , (24)

where hπ and h̃ are the time headway obtained from the proposed schedule-following model and
observed AVL data, respectively. P(hπ ,m = hm) and P(h̃m = hm) are the probabilities that the simu-
lated or actual headway are equal to a value h at stop m. These values range from 0 (bus-bunching)
to 2Hminutes. By this definition, z ∈ [0, 1] and z→ 0 represent the better fit whereas z→ 1 indicates
the worse fit. Each set of solutions contains five values for [vmin, vmax, θ1, θ2, θ3], where the calibration
is subjected to the predefined upper and lower bounds [πmax

j ,πmin
j ] of each parameter. We replicate

each solution 100 times to build up a comparable sample size of hπ to compare with the observed
data h. After several empirical tests, we adopt the following hyper-parameters for the CEM:

• Samples: 1000 solutions,
• Elite samples ratio: 20%.

6.3. Calibration results

The calibration process is considered ‘converged’ if the mean and standard deviation of z over 1000
samples satisfy the following two criteria:

• After five iterations, the mean of z (over 1000 samples) do not reduce by more than 5%.
• The standard deviation of z (over 1000 samples) is close to zero.

Figure 9. Progression of the performance index z (over 1000 samples): (a) convergence of the mean of z and (b) convergence of
the standard deviation of z.
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Table 2. Schedule-following model parame-
ters and performance index after calibration.

Calibrated parameters Value

vmin 17.06 km/h
vmax 51.83 km/h
θ1 23.4 s
θ2 3.9 s
θ3 1.54 s
Best z 0.057

Figure 10. Headway distribution at some stops along the Route 555.

Figure 9 shows the progression of z after 27 iterations.
Figure 9 shows that a reasonable convergence has been reached where the standard deviation

of the objective function approaches zero and the value of the expected objective function does
not improve anymore. Table 2 shows the best parameters settings and performance index z of the
proposed schedule-following model after calibration.

Figure 10 compares the simulated headway hπ of the calibratedmodel and the observed headway
h from AVL data at some stops along the Route 555.

The distribution of hπ and h is very similar. Two-sample Kolmogorov–Smirnov tests are also con-
ducted to compare the two distributions. The results are also presented in Figure 10, where D is the
Kolmogorov–Smirnov statistic or the absolutemax distance (supremum) between the CDFs of the two
samples.p is thep-valueof theKolmogorov–Smirnov test. Thenull hypothesis thathπ andh come from
the same distribution can only be rejected at the 95% confidence level if the p-value is less than 0.05.
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Figure 10 therefore shows that the proposedmodel can reproduce a similar headway to that exhibited
by the observed data.

7. Conclusion

This paper develops a new innovative bus route simulationmodel to capture the dynamics of buses as
observed inAVLdata. Themodel captures three importantphenomenon: (1) buses follow the schedule
and aim to adhere to the schedule as closely as possible, (2) bus bunching occurs when the following
bus catches up with a late bus, especially at times of high demand, and (3) leapfrogging occurs when
two or more buses cannot separate from each other.

When evaluating the numerical simulation results using time-space and phase diagrams, the pro-
posed model shows the most realistic dynamics compared to two popular types of bus simulation
models: the bus-followingmodel and the traffic-followingmodel. Buses in the proposedmodel adjust
their cruise speed to adhere to the schedules, which is similar to the practice when bus drivers have to
follow a predefined schedule. The proposed schedule-followingmodel also shows all four operational
phases, similar to the empirical findings in Liu and Sinha (2007) using only five governing parameters.

Themodel is calibrated using the observed AVL and Smart Card data. The case study demonstrates
that the proposed model reproduces similar headway to the observed data. Further developments
include incorporating schedule-following and traffic-followingmechanisms and extending themodel
to system-wide networks to augment themodel’s applicability to policymakers in practice. Themodel
can also be used to investigate the causes and impacts of bus bunching and leap-frog bunching.
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Appendix. Cross-entropymethod for optimisation
This Appendix describes the pseudocode for the cross-entropy method for normal distribution (Rubinstein 1999).

Algorithm 2: Cross-entropy method for normal distribution

1 Set p = (µ1, σ1,µ2, σ2, ...,µK , σK) %Initial distribution parameters
2 SetM %Number of stops
3 Set T %Maximum iteration number
4 Set I %Maximum iteration number
5 Set ρ % Set selection ratio
6 for t from 1 to T do
7 %Main CEM loop
8 for i from 1 to I do
9 Draw y(i) fromN (µ, σ ) %Draw I samples

10 Compute f i := f (y(i)

11 end
12 Sort f i-values %Order by decreasing magnitude
13 γ ← fρ.I %Set threshold
14 Lγ ← {y(i)|f (y(i)) ≤ γ %Collect elite samples

15 µ′j = 1
Lγ

∑Lγ
i=1 µi,j %Update µ

16 σ ′j = 1
Lγ

∑Lγ
i=1 σi,j %Update σ

17 µj ← αµ′j + (1− α)µj %Update with step size α

18 σj ← ασ ′j + (1− α)σj %Update with step size α

19 end
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