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Overview

Simulation models are becoming increasingly

popular in criminology research. In order for

researchers to have confidence in the results of
simulation studies, it is essential to make sure that

the models are properly evaluated. Calibration is
a major element to this evaluation and refers to
the estimation and adjustment of model parame-

ters to improve the agreement between model

output and a data set. This entry will discuss
some different methods of model calibration as

well as related quantitative methods of error

assessment.

Introduction

Simulation models are becoming increasingly
popular in criminology research, both as tools

for exploring real-world crime patterns

(explanatory models) and for experimenting
with underlying theory (conceptual models).

In order for researchers to have confidence in

the results of simulation studies, it is essential to
make sure that the models are properly evaluated.

The process of evaluation is commonly

divided into three activities, defined by Rykiel

(1996) as follows:

• Verification is a demonstration that the
modeling formalism is correct.

• Calibration is the estimation and adjustment

of model parameters and constants to improve
the agreement between model output and

a data set.
• Validation is a demonstration that a model

within its domain of applicability possesses

a satisfactory range of accuracy consistent
with the intended application of the model.

It is possible to calibrate a model quantita-

tively by assessing error using statistics or qual-
itatively by manually comparing model results

and field data. Qualitative approaches are partic-

ularly well suited to spatial models where the
researcher is able to compare maps. However,

for complicated models with many parameters,

a qualitative approach to calibration will proba-
bly be very time consuming and unlikely to

reveal the optimal model configuration (which

is the ultimate aim of calibration). Therefore,
this article will focus on quantitative methods of

error assessment (rather than relying on human

objectivity) and automatic calibration routines
that are able to explore a model’s parameter

space and estimate error without human interven-

tion. Also, in the context of environmental crim-
inology, it is much more important to accurately

reflect field conditions when working with

explanatory models – i.e., those that simulate
real-world conditions – so the discussion will

focus on these in particular. Conceptual models,
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on the other hand, will not necessarily attempt to
replicate real environmental conditions so auto-

matic calibration methods are less relevant.
The article is organized as follows.

Section outlines the main principles of calibra-

tion and Section follows with a more in-depth
assessment of a number of methods for model

calibration. Sections and complete the article by

discussing the state of the art, literature contro-
versies, and open questions.

Background

Calibration refers to the process of configuring
a model’s parameters to match some observed

historical data. This usually consists of searching

for a combination of parameter values that cause
the model to produce data which are similar to that

collected from the real system under investigation.

In many cases, a single “fitness” value is sought
which succinctly summarizes the correspondence

between simulated data and field observations.

Figure 1 illustrates the calibration process.
The model is repeatedly reconfigured with the

aim of reducing the error between the results

and the field data. Once a predetermined error
level has been reached, the process ends and

the model can be considered calibrated,

i.e., configured in such a way that it is apparently
able to simulate the real system effectively. The

level of error deemed acceptable is subjective and
depends on the individual study. It is also worth

noting that simply matching data is not necessar-

ily a sufficient criteria for establishing model
correctness, which is a point Section will address

in more detail.

With simple models, the process of configur-
ing parameters and calculating error is usually

relatively simple. However, simulation models

are often extremely complex and can contain
a large number of configurable parameters. To

confound the situation, model parameters often

have nonlinear effects on the model’s behavior
which makes it difficult to predict how the model

will behave under new parameter configurations.

Hence, the process of manipulating a model’s
parameters to match some field conditions is

often nontrivial.

To being with, the means of evaluating the
degree of similarity between model results and

expected data can be troublesome in itself. Once

a quantitative measure of similarity has been
developed, there are numerous methods that can

be used to explore the parameter space of the

model in search of the optimal configuration.
These are also known as optimization methods.

The following section will first discuss the
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different methods that can be used to calculate
error and follow with a review of a number of

automatic calibration/optimization routines.

Methods for Model Calibration

Assessing Goodness of Fit
In the context of calibration, goodness of fit
(GoF) is an important measure. It refers to the

error between the results of a model and the data

that it is trying to replicate (hereafter referred to
as “observed data”). Commonly, GoF statistics

are applied to tabular data, such as the number (or

rate) of crimes against different types of people,
within different spatial areas or during

a particular time period. Knudsen and

Fotheringham (1986) experimented with
a number of goodness-of-fit statistics and found

the standardized root mean square error

(SRMSE) to be the best performing.
A drawback with SRMSE, however, is that the

value itself is difficult to understand. For exam-

ple, with the SRMSE it is not possible to state
what percentage of the variation in observed data

can be accounted for by a model. An alternative

statistic, R2 solves this problem because it repre-
sents the percentage of agreement between the

model and the expected data. However, R2 is

insensitive to the overall amount of error,
predicting a good fit in some circumstances

where the SRMSE would not (Harland 2008).

The SRMSE can be defined as

SRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S y

0
i " yi

" #2
=n

$ %r

y
(1)

where y
0

i is the predicted value at matrix point i, yi
is the actual value at i, ȳ is the mean value of the

predicted values (y0), and n is the total number of

values. The lower limit of the statistic is 0 which
indicates no difference between the predicted

values (y
0

i) and the observed values (yi). The

upper limit is usually 1 (Knudsen and
Fotheringham 1986) but can be greater, particu-

larly when matrices are sparse (Harland 2008).

Using the same notation, R2 can be defined as

R2 ¼ 1"

P
i

yi " y
0

i

" #2

P
i

yi " !yð Þ2
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and a value of 1 indicates identical data sets. The

lower limit of the statistic is 0.

There are a variety of alternative GoF statistics
that could be used to assess model error and the

most appropriate will depend on the data and

application area. For more information about
the statistics discussed here, the interested reader

can refer to the comprehensive assessment in

Knudsen and Fotheringham (1986). Alterna-
tively, there are a wide range of textbooks that

define methods for both parametric and non-

parametric data. In terms of calibration, the
most important decision is to choose the GoF

statistic that is appropriate to the study and the

nature of the data so that a reliable assessment of
error can be made. In addition, more than one

statistic could be used simultaneously to provide

a more comprehensive assessment of model
error.

Goodness of Fit for Spatial Data
Many simulation models in environmental crim-

inology explore the spatial distributions of crime

(Liu et al. 2005; Groff 2007; Hayslett-McCall
et al. 2008; Dray et al. 2008; Birks et al. 2012;

Malleson et al. 2013). If the simulations work at

an aggregate spatial scale (measuring crimes per
area), then the procedure for assessing GoF is the

same as that for nonspatial data. However, it is

preferable for simulation models to use data on
individual crime occurrences and, therefore, gen-

erate point pattern data. Common GoF measures

cannot be used to compare point patterns directly
as the data must be in the form of a table or

matrix. One solution to this problem is to first

aggregate the point data to commonly used areal
boundaries such as the enumeration district or

census tract. However, this process is far from

ideal. Firstly, such aggregation will expose the
results to the modifiable areal unit problem

(MAUP: Openshaw 1984). Openshaw found
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that changing the size and shape of the bound-
aries themselves can have a dramatic effect on the

resulting spatial patterns and subsequent results.
Secondly, the process of aggregating is likely to

hide important patterns that are present at finer

geographies. Andresen and Malleson (2011), for
example, showed that there was considerable

spatial heterogeneity in crime rates at the street

level which would be hidden at larger spatial
scales. Hence aggregation will inevitably intro-

duce error.

An alternative approach is to compare the
point patterns directly without aggregating.
Although no commonly accepted methods exist

for this purpose, such as the SRMSE or R2 there
are a a number of useful spatial statistics that can

describe the distributions of point patterns and
can be used to make mathematical comparisons.

These could replace, or compliment, traditional

GoF statistics used to determine model error dur-
ing calibration. Table 1 summarizes some of

these statistics and illustrates the results of their

application to three data sets: two similar point
patterns produced by a simulation model

(“Model1” and “Model2”) and a point pattern

produced by a random process (“Random”).
The functions outlined in Table 1 provide

information about the degree of clustering in

Calibration of Simulation Models, Table 1 A summary of spatial statistics that can be used to describe and compare
the spatial structure of point patterns (Malleson 2010)

Statistic Pros/cons Usage with example data

Nearest Neighbour Index (NNI) –
also known as the Clark and Evans R
statistic (Clark and Evans 1954) – is
the ratio of the minimum nearest-
neighbour distance. The nearest-
neighbour distance for a point i is the
distance to the closest neighbouring
point. (dmin) to the expected
minimum distance for a random
point pattern (!d)

NNI ¼ !dmin
!d ¼

Pn

i¼1

dij
n

1

2
ffiffiffiffi
A n=

p ð3Þ

Gives a concise general picture of
whether or not clustering is present
(compared to random data)
Usefil as a preliminary procedure
(Bailey and Gatrell 1995)
It is difficult to account for edge
effects (there are some solutions to
edge effect problems, such as
circular or rectangular corrections
(Levine 2006), but these are not ideal
(Chainey and Ratcliffe 2005))
Too simplistic to be really useful

The NNI statistics suggests that all the
data used in the following examples
(Modell, Model2 and Random) are
clustered which is to be expected
(Malleson et al. 2010). Althought the
statistic is not comprehensive enough to
assess error in isolation, it could be useful
as a preliminary measure of similarity as
part of a larger error assessment during
calibration

The G function, at a given distance,
d, is the fraction of points, si, whose
nearest neighbour is less than d
away:

G ¼ #ðdminðsiÞ<dÞ
n ð4Þ

where # means “the number of” (as
in Bailey and Gatrell 1995)
The F function is similar to G but
uses the distance from a randomly
selected map location to the nearest
point. As defined bu O’Sullivan and
Unwin (2003): if {p1 . . . pi . . . pm} is
a set of m randomly selected
locations and S is the set of all points,
then:

F ¼ #ðdminðpi;SÞdÞ
m ð5Þ

Describe clustering in more detail
than the NNI index by providing
a measure at different distances
Can be used to differentiate between
clustered and uniform data (see
O’Sullivan and Unwin (2003) for
a fuller discussion)
Only consider a single nearest
neighbour distance in their
calculations so disregard
a considerable amount of
information

The following illustrates the G functions
for the Model1, Model2 and Random data
sets (graphs of F are similar). The graphs
illustrate that, at shorter distances, the
model data sets are more clustered than
the Random one. Therefore a traditional
GoF statistic could subsequently be used
to estimate the differences between the G
of F graphs for different data. This would
provide a single statistical measure of
similarity which could be used during
calibration

d

G
(d

)

Model1
Model2
Random

(continued)
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point pattern data. Although these statistics have
the benefit that they are not susceptible to the

modifiable areal unit problem, they could not be

used during calibration, in isolation, because it is
possible that two different point patterns never-

theless have the same clustering properties. How-

ever, these could be used in conjunction with
other methods (such as aggregating the points to

area boundaries and applying a GoF test) to pro-

vide a more comprehensive error assessment.
As well as comparing mathematical descrip-

tions of clustering in point patterns, it is also

possible to generate raster density maps from
the point patterns and compare these mathemati-

cally. This approach is common in the field of

spatial modeling for comparing simulated and
real land use. For a review of recent approaches,

the reader is directed to Kuhnert et al. (2005).

Finally, it is also possible to aggregate the point
patterns to a regular grid and then use traditional

GoF statistics on the resulting matrix as discussed
by Costanza (1989). This approach has the

advantage of reducing the effects of the modifi-
able areal unit problem because numerous regular

grids can be applied to the point patterns at the

same resolution.

Exploring the Parameter Space
Having determined an effective means of esti-
mating the goodness of fit between simulated

and observed data, calibration itself can begin.

The task of model calibration is effectively
a search through the model parameter space,

assessing the accuracy of the model under differ-

ent combinations of parameters. For simulation
models with large numbers of continuous param-

eters, this search space will be extensive. This is

confounded by the fact that simulation models
are often nonlinear, so the effects of changing

parameter values are not easy to predict.

For example, Fig. 2 presents an example
parameter space for a nonlinear model with two

continuous parameters (A and B). Varying
parameter combinations changes the accuracy of

Calibration of Simulation Models, Table 1 (continued)

Statistic Pros/cons Usage with example data

The L function is a transformation
of Ripley’s K that provides evidence
for whether or not clustering is more
or less than would be expected under
complete spatial randomness (CSR)
(O’Sullivan and Unwin 2003):

LðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðdÞ
p " d

q
ð6Þ

Values of L(d)< 0 suggest that there
are fewer events in the space than
would be expected under CSR and
that the data are therefore less
clustered. The reverse is true for
L(d) > 0

Takes all the neighbours that are
within a given distance into account
so is a more descriptive statistic
By comparing graphs of L(d) it is
possible to determine how similar
the clustering of to point patterns is

The following graph illustrates that the
Model1 and Model2 data are more
clustered than the random dataset (which
equates to approximately L(d)¼ 0 for low
d values). Above d% 3,000 L begins to fall
due to boundary effects (this is because
many of the large circles produced by the
underlying K function are nearly empty at
large distances because they cover areas
outside the simulation boundary with no
points (O’Sullivan and Unwin 2003). As
with the G and F functions, it would be
possible to use a traditional GoF statistic
to quantitatively compare the similarity of
L functions for two point patterns (e.g.,
simulated data and calibration data)

d

L(
d)

Model1
Model2
Random
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the model results; hence the aim of the calibration

process is to find the optimal parameter configu-
rations (“global optima”). However, even for

a model with a low number of parameters, it

becomes apparent that a manual search of the
parameter space is unlikely to reveal global

optima. Therefore calibration is often conducted

by computer algorithms which are able to intelli-
gently search the vast parameter space.

Parameter Sweeps
A parameter sweep is a simple process of system-

atically varying the model parameters in

sequence so that many possible combinations
are explored. Each parameter to be tested has

a start, end, and increment value which deter-

mines the range of possible values that the param-
eter will take. Again using Fig. 2 as an example,

a parameter sweep with start ¼ 1, end ¼ 10, and

increment ¼ 1 for both parameters A and B
results in 100 possible parameter combinations.

Although the method is simple, it has

a number of drawbacks, namely:
• The number of individual runs can be exten-

sive because it increases exponentially with

the number of parameters. For example, to
conduct a parameter sweep on a model with

five parameters, each of them integers
between 1 and 10, a total of 105 ¼ 100,000

model runs will be required.

• The sweep explores the entire parameter space

equally. More advanced approaches are able

to expend greater effort fine tuning already
successful configurations and ignore parts of

the parameter space that are extremely

unlikely to reveal global optima.

Hill Climbing

Hill climbing is a procedure that starts with an
arbitrary model configuration and makes a small

change to one of the parameters. If the change

improves the performance of the model (reduces
error), then it is retained. If the change increases

error, then it is discarded. This process repeats

until there are no possible parameter changes that
improve the model. The main drawback with the

approach is it is likely to get stuck on suboptimal

configurations (e.g., the local maxima in Fig. 2),
in which case it would be necessary to temporar-

ily accept changes to the configuration that will

actually increase the error between the model and
the calibration data.

Simulated Annealing
Annealing is the process used in metallurgy in

which a material is heated and then cooled

in order to alter its properties (strength,
brittleness, etc.). The amount of time spent at

a high temperature and the rate of cooling influ-
ence the resulting properties of the material. The

Global optima

Local maxima

Global minima

Parameter A
Parameter B

Calibration of
Simulation Models,
Fig. 2 An example
parameter space for
a nonlinear model with two
parameters
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simulated annealing optimization procedure

takes its inspiration from an algorithm that simu-

lates this annealing process (Metropolis et al.
1953). Originally formulated by Kirkpatrick

et al. (1983), the procedure improves upon hill

climbing algorithms by occasionally allowing
choices that lower the fitness of the model.

Whereas hill climbing will always choose the

best move from those available, simulated
annealing chooses a random move from the

neighborhood. If the move improves the fitness,

then it is always accepted, but if it does not, then
there is still a possibility that it will be accepted.
This helps the algorithm to climb out of local

maxima.
The criteria for accepting a lower fitness is

given by

P ¼ e"c=t > R 0; 1ð Þ (7)

where c is the change in fitness (negative for an
improvement, positive for deterioration), t is the
temperature, and R(0,1) is a random number in

the range 0–1. The temperature is used to reduce
the chance of accepting poor moves over time so

that the algorithm will converge. This is analo-

gous to gradually reducing the temperature in the
annealing process. If t ¼ 0 then only improve-

ments to the fitness will be accepted which causes
the algorithm to behave like a hill climbing

procedure. Figure 3 illustrates the change in P
for a range of moves under two different temper-

atures. Note that if the change is positive (x < 0),
then P > 1 so the move will always be accepted.

As t decreases, so does the probability of

accepting a move.
The rate at which t drops, as well as its initial

and final values, will determine how successfully

the algorithm will run. Unfortunately there are no
standard rules for determining these values,

although a number of methods for estimating

suitable values have been proposed (Reeves
1995).

Genetic Algorithms

A Genetic Algorithm (GA) is a form of evolu-
tionary algorithm, based on Darwin’s theory of

natural selection (Darwin 1859). The algorithm

works on the premise that small variations in
organisms can accumulate if they induce an

increase in the overall fitness and this improves

the individuals’ ability to reproduce (Reeves and
Rowe 2003). When describing GAs, the follow-

ing concepts are important:

• A gene is a single model parameter.
• A chromosome is a combination of genes,

i.e., a unique model configuration.

• The population is the current set of chromo-
somes that the algorithm is using to explore

the parameter space.
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Calibration of Simulation Models, Fig. 3 The effect of temperature on the probability of accepting a regressive
move
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• Selection is the process of choosing the fittest

chromosomes.

• Recombination is the process of combining
the best chromosomes to initialize the new

population.

• Mutation is a means of exploring a wider area
in parameter space by randomly varying some

genes in a new population.

The GA is an iterative process, as illustrated
by Fig. 4. At each iteration, the algorithm finds

the fittest chromosomes (the model configura-

tions with lowest error) and uses these to create
the population in the subsequent iteration. The

algorithm runs for a set number of iterations

or until an acceptable goodness-of-fit value has
been found. Although the process of running

a GA does not change substantially across

implementations, the means of performing selec-
tion, recombination, and mutation can be adapted

depending on the characteristics of the parameter

space. See Reeves and Rowe (2003) for more
information.

The main advantage of a GA over the other

procedures is that it is able to “home in” on the
space with the fittest parameter configurations

without devoting effort to exploring suboptimal

areas. This makes it much more efficient. Also,
mutation allows the algorithm to explore a wider

search space which can prevent it from becoming
trapped in local maxima.

Calibration of Criminology Models

On the whole, very few simulation models in the
field of criminology apply the techniques outlined

here. This is partly because simulation modeling

has been, until recently, relatively underused in
criminology so there is only a limited literature

base to begin with. Also, and perhaps more impor-

tantly, a large number of studies are conceptual
rather than predictive. Conceptual models do not

attempt to replicate real-world crime patterns

and instead explore the dynamics of criminology
theory in an abstract, artificial environment. Hence

it is normally neither necessary nor possible to
configure these models to simulate data from the

real world. Predictive models, on the other hand,

do attempt to replicate real-world patterns and
therefore calibration should be an important part

of the modeling process.

However, of the limited relevant published
studies, very few have applied the formal

methods outlined here. For example, Malleson

et al. (2013) implement a simulation model of
residential burglary and, although automatic cal-

ibration is noted as advantageous, the authors

result to manual parameter configuration because
the extensive run time of the model leads to in

insurmountable computational requirements for

automated calibration algorithms (Malleson et al.
2012). Similarly, Groff (2007) discusses the

Randomly generate initial 
chromosomes

Optimal fitness
reached?

Return the best 
chromosome(s)

Yes

Selection
Select the best chromosomes
to parent the new generation

Recombination
Combine parent genes to
create new chromosomes

Mutation
Randomly mutate some genes

on some chromosomes
No

Calibration of Simulation Models, Fig. 4 The process of running a genetic algorithm
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advantages of a “common sense” approach to
model evaluation by examining factors such as

the degree of clustering and the spatial dynamics
of hotspots. Again, formal calibration methods

such as those outlined here are not applied,

although the authors stress that the field is “wide
open” (Groff 2007, p. 99). There are numerous

other predictive simulation models that would

benefit from a rigorous approach to calibration
but, for a number of reasons, calibration is not

applied with the same rigor as with simulation

models in other fields. Partly, this will be because
the methods discussed here are not simple and

require a degree of computer literacy. But, also, it

is due to the novelty of the models to the field and,
with time, it is extremely likely that calibration,

as well as the other elements to model evaluation,

will form a more substantial part of the modeling
process.

Controversies and Open Questions

This entry has made reference to a number of
calibration methods that can be used to calibrate

simulation models. Other methods are available,

including simply adjusting parameters manually.
But those discussed here are the most suitable for

models of complex systems which often have

a large number of parameters, behave
nonlinearly, and consume/produce large amounts

of data. However, unless reliable observed data

can be gathered and methods developed to com-
pare the data to simulation results, the process of

calibration will not be able to improve model

performance (at least in the sense that the model
is a good representation of the real world). The

first problem is how to obtain reliable, real-world

data on which to build a picture of the underlying
system. Police recorded crime data is a common

source but has a number of drawbacks:

• Discrepancies in police recording practices
mean that some crimes, which are heavily

underreported, will be misrepresented in

police data – although this is somewhat medi-
ated by the assertion that unreported crime

clusters near reported crime (Chainey and

Ratcliffe 2005).

• The temporal accuracy is often questionable

because the actual time of the event is not
always known.

• Spatial accuracy can be variable if a location is

hard to code accurately (e.g., somewhere in
a park) or if human error corrupts the recorded

location.
• Offender data, which can be useful for the

calibration of the spatial movements of

offenders, by definition only provides infor-
mation about people who have been in contact

with the police and therefore misrepresents the

actual population of offenders.
Assuming good-quality crime data are avail-

able, it is still not certain that those data are the

most suitable for use in calibration. Firstly, many
models might be able to recreate the observed

crime patterns, but this does not guarantee that

any of them correctly represent the internal
dynamics of the system. This is known as the

identifiability problem and one that is common

to all modeling approaches – see, for example,
the discussion inWindrum et al. (2007). To deter-

mine which, if any, are “correct,” it might be

necessary to simultaneously calibrate against var-
ious different data sources that capture elements

of the system other than simply the crimes com-

mitted. Examples might include the use of social
surveys to represent victim behavior, crowd-

sourced data to explore “normal” day-to-day

behavior patterns or transport data to estimate
the routes that people use to navigate cities. The

“correct” model will fit the patterns illustrated by

these data and closely approximate the observed
crime data.

Although there is huge scope for improving

the calibration of criminology simulation
models, relatively little has been done in prac-

tice. This is not, however, unexpected. The

methods employed are still in their infancy,
relative to their traditional mathematical coun-

terparts at least, so it takes some considerable

effort to develop a model in the first place.
However, as the methods become more widely

used and the tools to develop them become

easier to manage, there is no reason that stan-
dard, widely adopted approaches to calibration

cannot emerge.
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Related Entries

▶Agent-Based Models to Predict Crime at

Places
▶ Spatial Models and Network Analysis
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