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Abstract. Agent-based modelling (ABM) is ideally suited to simulating
crowds of people as it captures the complex behaviours and interactions
between individuals that lead to the emergence of crowding. Currently,
it is not possible to use ABM for real-time simulation due to the ab-
sence of established mechanisms for dynamically incorporating real-time
data. This means that, although models are able to perform useful offline
crowd simulations, they are unable to simulate the behaviours of crowds
in real time. This paper begins to address this drawback by demonstrat-
ing how a data assimilation algorithm, the Unscented Kalman Filter
(UKF), can be used to incorporate pseudo-real data into an agent-based
model at run time. Experiments are conducted to test how well the al-
gorithm works when a proportion of agents are tracked directly under
varying levels of uncertainty. Notably, the experiments show that the
behaviour of unobserved agents can be inferred from the behaviours of
those that are observed. This has implications for modelling real crowds
where full knowledge of all individuals will never be known. In present-
ing a new approach for creating real-time simulations of crowds, this
paper has important implications for the management of various envi-
ronments in global cities, from single buildings to larger structures such
as transportation hubs, sports stadiums, through to entire city regions.
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1 Introduction

Agent-based modelling has become a popular tool for simulating the behaviour
of crowds. While existing agent-based crowd simulation models are effective at
analysing ‘what-if’ scenarios for the development of policies, they are not yet
capable of simulating crowds in real time. Instead, models that are calibrated
to historical data, are often projected forward in time to make a prediction
independently of any new data that might arise [19]. Uncertainty is inherent
in the underlying system — e.g. in the precise locations of individuals in a
crowd, or in the choices that they make when faced with decisions — so even a
well-calibrated model will diverge from the true state of the underlying system.
Without the ability to adapt a simulation model to the current system state,
it is very difficult to use the model to support any crowd management policies
in real time. A mechanism is required that readily allows the incorporation of
real-time data into an agent-based model. Such a mechanism would allow for
the real-time analysis of pedestrian flows around urban spaces.

This paper, which is part of a wider programme of work5, introduces a new
and novel approach that can be used to update the state of an agent-based model
in response to new data in real time. This is achieved through the use of Data
assimilation (DA) [5]; a widely used method in fields such as meteorology, hydrol-
ogy and oceanography, but rarely attempted for use in agent-based modelling.
The paper makes use of a simple crowding model, StationSim, and a particular
DA method, the Unscented Kalman Filter (UKF), to show how DA can be used
to reduce the uncertainty in a real time simulation of a crowd. Although the
work here only considers the uncertainty in the agents’ spatial locations, the
algorithm could be used to estimate any other agent parameter or generalised to
other types of agent-based models. To quantify the errors precisely and to allow
experiments with different types of observations, the identical twin experimental
framework [18] is used. The contribution of this paper is twofold. First, to the
best of the authors’ knowledge, this is the first study that aims to adapt and
apply the UKF to incorporate real-time data into an agent-based model. Second,
we evaluate the accuracy of the UKF with limited information about the crowd,
i.e. only some ‘individuals’ in the crowd are tracked, with future work extending
the algorithm to the use of aggregate observation data.

2 Relevant Research

In recent years, efforts have been made to develop methods that will allow agent-
based models to react to real-world observations. Examples of these approaches
are often developed under the banner of ‘Data-Driven Agent-Based Modelling’
(DDABM), which itself emerged from a broader work in data-driven application
systems [2]. A number of recent attempts have been made to allow agent-based
models to react to new data [12,18,20,11,7,10,19,13,8,6]. However, whilst promis-
ing these applications all exhibit a number of limitations that this work will begin

5 http://dust.leeds.ac.uk/
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to address. These include: the need for manual calibration [11] (which is infea-
sible in most cases); models with only a few agents and/or limited interactions
[18,6]; assumptions that agent behaviours can be proxied by simple regression
models [20] (which precludes the addition of more advanced behavioural models);
the dynamic optimisation of parameters but not the underlying model state [10]
(which might have diverged substantially from reality); the use of agent-based
models that are simple enough to be approximated by an aggregate mathemat-
ical model [7,19] (which undermines the importance of using ABM in the first
place); and the use of a data assimilation method whose computational com-
plexity explodes with increasing model size [9,6].

3 Methods

3.1 Overview

The aim of a Data Assimilation (DA) method is to use current, real-world obser-
vations to update the internal state of a model. In this manner, “all the available
information” [14] is used to and create a combined representation of the system
that is closer to the true state than either the observations or the model in
isolation. The DA approach differs from typical agent-based parameter estima-
tion/calibration because DA is used to update the internal state of the model,
not just the values of its parameters. The DA process works as follows:

1. The forecast step involves running the simulation (an ABM in this case)
forward up to the point that some new observational data become available.
In effect this creates a prior estimate of the current system state;

2. The analysis step involves using the new observations, and their uncertain-
ties, to update the prior, creating a posterior that has combined the best
guess of the state from the model and the best guess of the state from the
observations. The number of model iterations that occur between analysis
steps is termed the DA ‘window’.

There are a range of DA methods that have been developed, including the
Successive Corrections Method, Optimal Interpolation, 3D-Var, 4D-Var, and var-
ious variants of Kalman Filtering [5]. Here a UKF is chosen due to its efficiency
relative to similar methods, such as the particle filter. However, it requires the
strong assumption of Gaussian distributed innovations. Research is needed into
the conditions under which the UKF performs well as this approach could po-
tentially reduce the number of calculations for larger scale agent-based models
(i.e. large numbers of individual agents) without a significant loss of accuracy.

3.2 The Agent-Based Model: StationSim

StationSim is an agent-based model of pedestrian movement. The model has
been designed specifically to be simple — at least in comparison to more com-
prehensive crowd simulations — because the aim here is to experiment with
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the data assimilation method, not to accurately simulate a pedestrian system.
That said, the data assimilation algorithms are not tied to StationSim so could
be easily adapted for new systems such as traffic dynamics or disease spread.
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Fig. 1: The StationSim environment
with 3 entrance and 2 exit doors.

The model contains three entrances
and two exits. N agents are cre-
ated upon initialisation, with each
agent assigned an entrance and exit
at random. Each agent has a desired
maximum speed which is also chosen
randomly from a Gaussian distribu-
tion. The simulation ends when all
N agents have entered and exited the
simulation environment. Agents inter-
act when slowly moving agents block

the paths of the faster moving agents. When ‘collisions’ occur, the faster agent
makes a random binary choice whether to overtake the slower agent by moving
around them to the left or the right. This random choice causes crowding to
emerge at different times and locations each time the model is executed. A more
comprehensive description of the model can be found in [9], and the model code
is available in full from the project repository6.

3.3 Data Assimilation with the Unscented Kalman Filter (UKF)

Kalman Filtering is a well-known data assimilation technique. Ensemble Kalman
filtering is an adaptation to the basic filter that can be applied to nonlinear
models [19]. In this paper we focus on the Unscented Kalman Filter (UKF) [17].
The UKF uses statistical linearisation, whereby a number of ‘sigma points’ are
chosen deterministically to preserve the first two moments of the distribution
of states in the model state-space, which is assumed to be Gaussian. These
sigma points are passed directly through the nonlinear model and a weighted
combination yields the mean and covariance of the updated state. This produces
estimates with smaller errors relative to the extended Kalman filter [4].

Let xi ∈ X ⊆ Rn denote the model state at the discrete observation time
ti, where i ∈ N. We assume that the model state is updated according to the
difference equation,

xi+1 = f(xi, qi), (1)

where process noise qi is a random variable with known probability distribution
that captures the stochasticity of the model. The transition function f represents
the agent-based model’s stepping mechanism, which for StationSim moves each
agent towards its desired exit whilst avoiding collisions with other agents. The
observation vector yk ∈ Y ⊆ Rm is determined from the state-vector via

yi+1 = h(xi+1, ri), (2)

6 The StationSim model, specifically, can be found at: https://git.io/JvJSm. The code
to run the experiments conducted here can be found at https://git.io/JvJSq.

https://git.io/JvJSm
https://git.io/JvJSq
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where ri captures the sensor noise. The mean and covariance of xi is denoted
by x̂i and Pi respectively. Similarly the mean and covariance of yi by ŷi and Qi

respectively.
Given the expected values of the state and observation vectors, x̂i and ŷi, and

their corresponding covariance matrices, Pi and Qi at time ti, data assimilation
proceeds via two steps [17,16].

1. In the forecast step, a sample of k sigma points X (j)
i , for 1 ≤ j ≤ k are com-

puted deterministically about the mean state x̂i. The sigma points are then

evolved independently forward in time via (1) to give X (j)
i+1 = f(X (j)

i , qi).
The forecast of the expected state x̂i+1 at time ti+1 is given by a weighted

sum of the sigma points X (j)
i+1 using the Unscented Transform function [15].

Forecasts for the observation vector can be computed in a similar way using
(2), as well as the covariances and cross-covariances.

2. The analysis step, following the observations at time ti+1, follows the stan-
dard Kalman filter using the expected value of the state vector x̂i+1 and
covariance Pi+1.

These steps are then iterated until the final observation. The UKF requires user
choices for both the type of sigma points used and the mean weightings in the
forecast step. For simplicity, we use the standard choice of Merwe’s Scaled Sigma
Points and their corresponding weightings. In addition to the expected values of
the state and its covariance, the set of k = 2m + 1 sigma points is constructed
using three tuning parameters α, β, and κ. The concept is similar to that of an
m-dimensional confidence interval, using a central mean sigma point as well as
2p outer sigma points centred about the mean some distance away depending
on the covariance structure. Given our high-dimensional state-space, we adopt
the recommended values in [17] for (α, β, κ) = (1, 2, 0). We also choose values
for the process and sensor noise as n/m dimensional identity matrix structures
In and Im respectively. Other parameter values are listed in Table 1.

Table 1: Main parameters used in the experiments

Number of agents n [10, 20, 30]
Number of experiments (repetitions) N 30
Observation noise. σ2 0.52

Data assimilation ‘window’ f 5
Tuning parameters α, β, κ [1, 2, 0]
Proportion of agents observed p [0.25, 0.5, 0.75, 1.0]
Process/Sensor noise qi/ri In/Im

3.4 Error metrics

Recall that the paper follows an ‘identical twin’ experimental framework, such
that the StationSim model is first run once in order to create pseudo-real ob-
servations which are assumed to be drawn from the real world. This allows the
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true state of the system to be known, and hence precise errors to be calculated.
In reality the true system state cannot be known precisely.

Assume we repeat an experiment N times where the ith experiment has ni
agents and ti time steps. For some agent j ∈ 1, ..., ni at time k ∈ 1, ..., ti we anal-
yse the efficacy of the UKF using the Euclidean distance between each agents’
true (xjk, yjk) and UKF predicted (x̂jk, ŷjk) Cartesian coordinates (Equation 3).
This provides a matrix of distances diti×ni

with each column representing an
agents error over time and each row representing the spread of agent errors at
each time point. We calculate an agent error vector x̃ij = (x̃i0, x̃

i
1, ..., x̃

i
ni

) for the
ith experiment with the jth element representing the median error for the jth
agent (jth column of d). We use medians here to avoid bias caused by taking
the means of heavily right skewed agent error distributions.

diti×ni
= dijk =

√
(xjk − x̂jk)2 + (yjk − ŷjk)2 (3)

x̃ij = median
k∈1,...,ti

(dijk) (4)

For multiple runs we calculate the grand median error vector x̄ = (x̄1, x̄2, ..., x̄N )
where the ith element represents the median of mean agent errors for the ith
model run.

x̄i = median
j∈1,...,ni

(x̃ij) (5)

We then use this as a sample to gain a measure of the UKF’s general efficacy
given certain parameters. We use both the raw sample and the sample mean for
boxplots and choropleths respectively.

4 Results

4.1 Overview of the experiments

The aim of the experiments is to provide a better understanding of the conditions
under which the UKF reliably estimates the ‘true’ state of a simple pedestrian
system. Two experiments are conducted7. The first compares the three different
approaches to the problem of real-time optimisation to quantify the improve-
ments offered by data assimilation under different conditions. The observational
data used are the locations of a sample of the pseudo-true agent population
generated initially by StationSim, which is analogous to tracking individuals in
a crowd. The second experiment investigates the proportion of agents who are
being tracked. This is to understand the amount of information that is required
about the underlying system for successful assimilation. Future work will also

7 This work was undertaken on ARC3, part of the High Performance Computing
facilities at the University of Leeds, UK.
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experiment with aggregate counts of people (e.g. population density) at different
spatial locations. This is similar to the types of observations that are available
from real systems.

4.2 Experiment 1: Benchmark

This experiment is designed to determine the improvement that filtering offers
over an entirely data-driven approach (i.e. pure observation without any model)
or an entirely model-based approach (i.e. pure prediction without observations).
It also establishes suitable values for the observational noise that is added to
the pseudo-truth data and explores the impacts of different data assimilation
window sizes, f , i.e. the number of model iterations between data assimilation
updates. Using these values, we establish a suitable benchmark under which the
UKF performs well. The chosen population size (n = 30) is large enough that
crowding occurs without excessive computational complexity. For each model run
we calculate the grand median distance between each ‘true’ agent position and
its estimate and take a further scalar median of 30 model repetitions (N = 30 is
sufficient to capture the variability in the results within a reasonable computation
time).

Figure 2 presents these scalars over varying noises and assimilation rates. We
assume that the noise added to the pseudo-real observations (sensor noise) and
the uncertainty associated with the individuals in StationSim (the process noise)
are treated equally, so the UKF relies on both predictions and observations per-
forming similarly well8. Figure 2a shows the error of the best performing metric
(observation, model, or UKF) and it is evident that when there is no observation
noise then the observations in isolation give the best estimate of the pseudo-true
system evolution (the yellow area in the left of the grid). Conversely, when obser-
vation noise is very high then the StationSim prediction provides the best (albeit
relatively poor) estimate because it is not confounded by noisy observations (the
red area to the right of the grid). However, when the observation noise is not
extreme, the UKF gives a more accurate prediction than the model or the obser-
vations in isolation (the blue area in the middle of the grid). Figure 2b shows the
same information, but illustrates the errors associated with the three approaches
simultaneously, rather than just the error of the best performing approach.

For the remaining experiments we set the data assimilation window size and
measurement noise to be 5 and 0.5 respectively. These parameters show the UKF
performing consistently well.

4.3 Experiment 2: Tracking Individuals

Here we show a simple implementation of the UKF for StationSim under a sce-
nario in which we track every individuals’ positions. The UKF is then ’stressed’

8 In practice, noise assumptions can be tailored to improve performance, but under
high dimensional scenarios such as this it can prove difficult to optimise. This pro-
vides a strong motivation for further adaptions to the UKF particularly adaptive
filtering [1].
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(a) The error of the best performing approach (observation, prediction,
or UKF).
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Fig. 2: Errors of estimated agent positions against ‘true’ positions comparing:
(1) observations in isolation; (2) StationSim predictions in isolation; and (3)
UKF predictions (assimilation of StationSim predictions and observations) with
different data assimilation window sizes and levels of observation noise.
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through inducing uncertainty by assuming only some proportion of the crowd
can be tracked. A further test is to ascertain whether the filter can both esti-
mate the positions of observed agents and unobserved agents of which it has no
direct information. When initialising the filter we randomly assign agents to be
observed or unobserved. This allows us to observe how well the UKF can track
unobserved agents using only its propagated covariance structure and initial
conditions.

Fig. 3: An example StationSim run showing the
performance for observed agents as well as both
common and outlier unobserved agents.

With observation frequency
and noise parameters de-
cided, we look at the be-
haviour of a typical Station-
Sim example using diagnos-
tics from a single run with 30
agents of which a proportion
of 0.5 (50%) are observed.
This is illustrated in Fig-
ure 3 which shows the pseudo-
true positions of StationSim
agents and their UKF pre-
dicted counterparts. As ex-
pected, the estimated posi-
tions of observed agents are
consistently close to their true
positions with small errors in-
troduced through the obser-
vation noise. Unobserved agent predictions, however, are much less consistent.
Histograms of the L2 error for unobserved agents illustrate a very long tailed
distribution split between low error and high error agents. Hence the unobserved
agents can be generally grouped into two categories:

– Common agents, whose behaviour is similar to some subset of observed
agents, exhibit strong cross-covariances between similar agents in the UKF
covariance structure allowing them to orientate themselves with reasonable
accuracy.

– Outlier agents, who have no similar agents to reference, have no strong
cross covariances and as such have no points of reference resulting in a drift
from the true positions. This lack of reference points comes from either an
agent being too fast, too slow, or getting stuck in a crowd.

We now extend our diagnostics to multiple UKF runs. We have three popu-
lation sizes (n ∈ [10, 20, 30]) and assume noisy GPS style position data for some
proportion of agents between 0.25 and 1.0 (25% to 100% of observed agents).
We repeat each run 30 times taking a sample of the grand median agent errors
(see equation 5) for each population n and proportion p. As a quick performance
overview, the median of each sample providing scalar values for each (n, p) pair
is also taken. Figure 4 illustrates the overall error for all agents (4a) and the
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errors of just the unobserved agents (4b). For the observed agents (not shown)
there is very little error — approximately 0.5 ± 0.03 — suggesting the UKF
uniformly fits these observed agents well. As the proportion of observed agents
increases beyond 0.25, the overall estimate (4a) improves. Although an increase
is to be expected, the improvement is nonlinear. Figure 4b shows that the error
of unobserved agents, specifically, goes down as a larger proportion of agents
are observed. Hence the rapid overall improvement occurs because the filter not
only knows the positions of a larger number of agents, but is also able to better
estimate the positions of the unobserved agents using solely its propagated co-
variance structure. As a slight note of caution, there is a large variation in the
error of the unobserved agents, therefore using a single median value to represent
the overall success of the filter masks some of this variation.
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Fig. 4: Grand agent error choropleths for all agents (a) and unobserved agents
only (b).

5 Conclusion

This paper has developed an Unscented Kalman Filter (UKF) that can be used
to perform data assimilation on an agent-based model. Although previous efforts
have used particle filters for this task [18,13,8,9,6] and variants of the Kalman
filter for simpler models [19], this is the first time that an unscented Kalman fil-
ter has been used to optimise an agent-based model that includes heterogeneous,
interacting agents. Importantly, the UKF is able to predict the locations of the
agents with relatively little information about the crowd. This is encouraging for
its application to real crowd systems where only limited information is typically
available. Furthermore, the UKF has the potential to incorporate real-time data
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into larger scale and more realistic ABMs, in comparison to other data assim-
ilation methods, because the UKF uses only a limited number of sigma points
and is hence less likely to require large, computationally expensive ensembles.

There are inevitably drawbacks to the approach that will be addressed in
future work. The calculation of sigma points requires finding the square root
of the state covariance matrix which is the main computational bottleneck of
the algorithm. This becomes a problem for high dimensional cases where alter-
natives such as the Ensemble Kalman Filter (EnKF) become preferable. The
Square Root Unscented Kalman Filter (SRUKF) [16] has been proposed as a so-
lution to this and while even faster than the UKF it suffers from major stability
issues for high dimensional cases [3]. Other hyperparameter choices, such as the
process and sensor noise covariance structures, are important to prevent filter
divergence in high dimensional cases. Adaptive filtering [3], which updates these
parameters over time in search of an optimum might be useful. Furthermore, the
classical UKF assumes conjugate Gaussian priors and likelihoods, which limits
its flexibility in comparison to similar methods such as the Particle Filter.

Despite these drawbacks, the UKF is clearly a method that deserves further
research into its efficacy for conducting data assimilation with agent-based mod-
els. This paper has laid important groundwork. Immediate future work will: (1)
evaluate the efficiency of the UKF in comparison to competing methods such as
the Particle Filter and Ensemble Kalman Filter; (2) experiment with observa-
tions of different types (such as crowd densities or population counters rather
than individual traces); and (3) begin to apply the method on a more realistic
crowd system using a more realistic agent-based model.
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