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Simulation

Implementing comprehensive offender
behaviour in a realistic agent-based
model of burglary

Nick Malleson, Linda See, Andy Evans and
Alison Heppenstall

Abstract

Explaining and modelling crime patterns is an exercise that has taxed policy-makers, criminologists, social reformers

and the police ever since the first crime patterns were recorded. Crime is a particularly difficult phenomenon to

model because of its inherent complexity; crime patterns are built up from a multitude of human-human and human-

environment micro-interactions that ultimately lead to individual crime events. Commonly used modelling techniques,

such as regression, struggle to fully account for the dynamics of the crime system. They work at aggregate scales thereby

disregarding important individual-level variation and also struggle to account for the effects of different types of human

behaviour. Furthermore, important concepts from environmental criminology – such as individual offender awareness

spaces or heterogeneity in offender decision-making – cannot be included directly when working at a resolution above

that of the individual.

This research addresses the drawbacks associated with traditional mathematical crime models by building an agent-

based simulation with a unique offender behavioural model. Through use of the PECS framework for modelling human

behaviour, agents are endowed with needs and motives that drive their behaviour and ultimately lead to the commission

of crime. As the model uses real-world environmental data, it can be used to make predictions in existing cities. The

paper demonstrates that use of this framework, in combination with an agent-based model, can replicate patterns and

trends that are supported by the current theoretical understanding of offending behaviour.
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1. Introduction

Explaining and modelling crime patterns is an exercise
that has taxed policy-makers, criminologists, social
reformers and the police ever since the first patterns
were recorded.1 One of the difficulties in simulating
this system is its complexity. City-wide crime patterns
are an emergent phenomenon; the individual crimes
that constitute a city-wide pattern result from a multi-
tude of interactions between people and their environ-
ment. Modern criminology theories – such as routine
activities theory2 and crime pattern theory3 – suggest
that to be able to predict the occurrences of individual
crime events (and hence the larger patterns) it is imper-
ative to consider the individual people and objects that

determine whether or not a crime will occur. Taking the
crime of residential burglary as an example, these
individuals include the burglar(s) who might commit
the crime (along with their personal psychology and
motivational state), the victim/house which will be the
subject of the burglary (as well as the surrounding urban
environment) and any potential guardians or passers-by
who might directly or indirectly affect the burglary.
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Potentially, the most productive crime model will be
the one that is able to account for all of these fac-
tors and model them directly at the level of the
individual.4

Because many crime models work at aggregate
scales, they omit important individual-level variation.
Research has found that burglars choose individual
homes based on their individual characteristics;
making assumptions about the homogeneity of a com-
munity when assessing burglary risk is therefore
invalid.5 Furthermore, it has been demonstrated that
patterns in street-level crime vary considerably so that
aggregate-level modelling of even the smallest areas
would hide important information.6,7,8 Moreover,
such models face difficulties in accounting for the effects
of different types of human behaviour. Important beha-
vioural concepts from environmental criminology –
such as individual offender awareness spaces,
motivational states and heterogeneity in offender
decision-making – can only be included directly when
individual people are simulated. However, accurately
modelling human behaviour is an extremely difficult
objective. Humans exhibit ‘‘soft’’ psychological factors
such as seemingly irrational behaviour and complex
decision making,9 which are highly challenging to sim-
ulate in a computer model.

To address some of these drawbacks, agent-based
crime models have started to emerge that simulate the
behaviour of individual people or objects and attempt
to incorporate criminology theory. Notable sources
are the recent book entitled ‘‘Artificial Crime Analysis
Systems: Using Computer Simulations and Geographic
Information Systems’’10 and a special issue of the
Journal of Experimental Criminology.11 For a full
review of recent approaches, the reader is directed
to.12 One of the most promising avenues for the
improvement of recent approaches is the incorporation
of a behavioural framework that allows for rich,
dynamic human psychology, producing agent behav-
iour that closely represents the underlying criminology
theory. Current approaches either include only simple
behavioural frameworks that allow for limited (or non-
existent) dynamic behaviour, or no framework at
all.13–15 This research improves upon the current
approaches by using an advanced cognitive framework,
the PECS model, to create a more realistic model of
offending behaviour. The focus of the paper is on the
crime of residential burglary and the study area, at pre-
sent, is the city of Leeds, UK.

The layout of the paper is as follows. Section 2 will
explore some of the available cognitive frameworks in
detail, ultimately concluding that the PECS framework
is the most appropriate for this application. Section 3
will then discuss how PECS has been adapted to create
a behavioural model for virtual burglar offender agents.

Section 4 will outline how the theoretical model has
been constructed using the available crime and environ-
mental data. Section 5 will then compare the simulation
results to the real crime data and discuss how closely
the results match current theoretical understanding
about offender behaviour, followed by conclusions in
Section 6.

2. Overview of behavioural frameworks

In agent-based modelling (ABM), an agent’s (or indi-
vidual’s) architecture determines how the functionality
of the agent is organised and how the agent replicates
human or biological traits.16 Creating accurate archi-
tectures to model human behaviour is one of the most
challenging aspects associated with ABMs of social sys-
tems. Fortunately, a number of architectures (or cogni-
tive frameworks) have been proposed to address
how these traits should be mimicked. Three of the
architectures are reviewed here: (i) Beliefs Desires
Intentions (BDI); (ii) Behaviour Based Artificial
Intelligence (BBAI); and (ii) Physical Conditions,
Emotional State, Cognitive Capabilities and Social
Status (PECS).

2.1. Beliefs desires intentions (BDI)

The BDI architecture17 is currently the most commonly
used architecture and has been used in a wide variety of
applications including geo-political conflict simula-
tions,18 air traffic management systems19 and frame-
works for models of crime reduction.20,21 The
framework consists of three major components: beliefs,
desires and intentions. Beliefs represent the agent’s
internal knowledge of the world. The agent has a
memory of past experiences and the current state of
the environment. Desires are all the goals that an
agent is trying to achieve. These can include short
term goals such as ‘eat food’ or more complex, long
term goals such as ‘raise children’. As some goals
might be contradictory, intentions represent the most
important goals which the agent will try to achieve first.
Intentions are sometimes viewed as a subset of goals,
while at other times they are viewed as the set of plans
to achieve the set of desired goals.16 Goals will change
with time depending on external inputs and the agent’s
internal state. A level of caution can be integrated into
a BDI agent by specifying how eager the agent is to
change its intentions.

The process which is used to determine how an agent
will react to some input from the environment is termed
the ‘‘actor loop’’. Each action is determined by the use
of the BDI architecture, i.e. no action is performed
without some form of deliberation.22 Therefore the
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behaviour of a BDI agent is characterised by practical
reasoning, i.e. goals are formulated and a plan is then
devised to satisfy these goals.16

Although the BDI architecture has been widely
used18,19,20,21 it has difficulties. Beliefs, desires and
intentions are difficult to observe directly unless
viewed in a controlled laboratory setting, which might
not relate to real situations.22 In addition, the use of the
three components (beliefs, desires and intentions) is cri-
ticised by both classical decision theorists, who criticise
them for being overly-complicated, and researchers in
sociology, who find them too restrictive.19 However,
the chief problem for crime modellers is that the archi-
tecture assumes rational decision making. This makes it
difficult to justify because humans rarely meet the
requirements of rational choice models.23

2.2. Behaviour based artificial intelligence (BBAI)

BBAI.24 is a modular behavioural architecture which
has been used in another agent-based model of
crime.13 Originally designed to control autonomous
robots, it can also be applied to software agents. The
basic structure consists of a number of hierarchical
layers of increasing behavioural complexity. All layers
act as individual controllers of the agent, and they oper-
ate independently and simultaneously. Therefore it is
the purpose of a ‘suppression mechanism’ to determine
which layer should have overall control at a
particular time.

The advantage with this approach is that the agent
can work towards different goals simultaneously and
no early decision needs to be made about which goals
to pursue.24 Having separate and autonomous layers
also provides robustness (i.e. if a high level fails, the
lower behavioural levels will ensure that the agent con-
tinues to function) and efficiency (i.e. there are no com-
munication overheads between layers). However, a new
layer must be created to implement the basic function-
ality that would otherwise be provided by the lower
layers leading to considerable model complexity and
attempts to implement intelligence using BBAI have
not proved as successful as alternative, hand-designed
systems.25 Although the trade-off of added complexity
for extra robustness is appropriate for implementing
simple behaviour in physical robots that may encounter
unexpected objects, virtual agents do not need very
robust behaviour because the environment is wholly
specified by the researcher. The advantages of robust-
ness are counteracted by the difficulties required
to implement complex ‘human-like’ behaviour.
Moreover, an architecture that is specifically designed
to model high levels of human intelligence is more
appropriate for socio-economic research and,

subsequently, the BBAI architecture is not widely
used in social modelling.

2.3. PECS

The PECS architecture is founded on the basis that
human behaviour can be modelled by taking into
account a person’s physical conditions, emotional
states, cognitive capabilities and social status. The
authors of the architecture26,27 believe that all aspects
of human behaviour can be modelled using these com-
ponents. Personality is incorporated into the agents by
adjusting the rate that internal state variables change
and also how these changes are reflected in agent
behaviour.28 Using a modified example suggested by
Schmidt,26 consider a person in a shop who is consid-
ering purchasing some goods. They might experience
physical needs (such as hunger), emotional states
(such as surprise at the available goods), cognition
(such as information about current prices) and influ-
ences associated with social status (which will affect
how the agent reacts to the shop assistant). The frame-
work is modular, with separate components controlling
each aspect of the agent’s behaviour.29

To compare the strength of all the different types of
behaviour which might be acting upon an agent simul-
taneously, PECS uses the concept of ‘motives’. Motives
can be drives (with drive-controlled behaviour),
emotions (with emotionally-controlled behaviour) or
acts of will (with constructive behaviour). Motives
can be compared from different behavioural systems
(e.g. comparing the drive to eat food with the act of
will of studying for an exam) using what are called
‘intensity functions’. The motive with the highest
intensity becomes the ‘action guiding motive’. Once
the action guiding motive is known, then the
agent can behave accordingly, whether this is to
instinctively react to a stimulus or to create a complex
action plan to pursue a constructive goal. Figure 1
provides an illustration of different motives and
motive selection.

The PECS framework distributes all behaviours into
two main categories: reactive and deliberative. Reactive
behaviour classifies actions which are largely instinctive
and can be modelled using a set of rules without delib-
eration on the part of the agent. The agent does not
consider why it is behaving the way it is, e.g. they are
not aware that looking for food is a task which ulti-
mately ensures survival. Deliberative behaviour, on the
other hand, involves the conscious pursuit of goals. The
agent can deliberate over its current goal(s), form
action plans to achieve a goal and break a larger goal
into smaller sub-goals. Table 1 summarises the different
types of behaviour as outlined by Schmidt30 and also
provides the corresponding intensity functions.

Malleson et al. 3
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Since rational decision making is not required and
the framework is not restricted to the factors of
beliefs, desires and intentions, PECS represents an
improvement over the BDI architecture.26 For these
reasons, the PECS framework appears to be the most
appropriate for the development of more realistic bur-
glar agents.

The documented use of the PECS framework, how-
ever, is currently limited, especially when compared to
other behavioural models such as BDI. Both31 and32

have used the PECS framework to build emotions
into a virtual learning environment. The authors incor-
porate non-verbal communication in the form of emo-
tional facial expressions to improve the relationship
between a human learner and a computer-controlled
tutor. In the field of health care, the framework has
been used to improve a simulation of disease screen-
ing.33 The use of PECS allowed for the incorporation
of individual behaviour, which is an important deter-
minant of a patient’s attendance at a screening session,
and is absent from the majority of other models in this
area. There is no currently published use of PECS for
agent-based modelling of crime other than initial work
by34 and.35

3. Adapting the PECS framework
for burglar agents

In environmental criminology, routine activities theory2

stipulates that a crime event comes about as a result of
the spatio-temporal convergence of a motivated offen-
der and a victim in the absence of a guardian to prevent
the crime. Therefore, to predict the spatio-temporal
locations of crimes it is necessary to model the daily
activities of the offenders and victims as these will
determine when the crime convergence takes place. In
a similar vein, crime pattern theory3 notes that as a

person navigates their environment – travelling between
‘anchor points’ such as work, home and friends’
houses – they build up an awareness space of the
areas that they know well. Crime is thus more likely
to occur where a person’s awareness space overlaps
with a criminal opportunity. Modelling this theory
requires a consideration for what a person’s anchor
points are and the ability to include an individual
awareness space built up over the course of a
simulation.

The focus of the behavioural model in this research
is, therefore, on creating realistic daily behavioural pat-
terns where potential burglars travel around the city at
sensible times, go to realistic places and build up accu-
rate awareness spaces. This can be achieved through the
simulation of drive controlled behaviour as relatively
simple drivers can be used to determine agents’ current
actions. It was decided that a more complex beha-
vioural model that includes forms of deliberative
behaviour is unnecessary at this stage. Only when the
model itself is much more complex and includes a
greater variety of behaviour (such as developing long-
term life plans for example) must deliberative behav-
iour be explicitly modelled. Nevertheless, the following
sections will demonstrate that the agent behaviour is
actually more complex than simple reactive behaviours
stipulated by PECS, and the framework has been
adapted accordingly. For example, the use of awareness
spaces are consistent with learned behaviour in that the
agents remember the neighbourhoods that they have
visited, which influences their future choices of burglary
targets. Moreover, whilst the agents do not know why
they need to satisfy their goals (which is a reactive
trait), the methods that they use to satisfy them are
complex and involve the ‘‘conscious pursuit of
goals’’26 with intermediate stages (i.e. a deliberative
trait) such as obtaining money to satisfy a drug
addiction.

Need

Emotion

Act of Will

Drive
Intensity

Emotion
Intensity

Strength
of Will

T = f(N, E, X )

E = g(I, A, X )

W = h(I, D, X )

Action guiding 
motive

Action 1

Action 2

Action n

Set of all
motives

Intensity
functions

Calculate strongest
motive

Set of all actions

Figure 1. Motives and motive selection, adapted from72.
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3.1. State variables, motives and actions

Agents have a number of motives which vary in
strength; the strongest motive at a particular time
drives the agents’ behaviour. The intensity of the
motives can be calculated using intensity functions
which are based on internal factors (or ‘state variables’)
as well as external influences. For example, an agent’s
level of energy could be a state variable that affects their
hunger motive. The first decision to make, therefore, is
which state variables should be included in the model.
As suggested by crime theories, burglars commonly

become aware of potential burglary victims either by
actively searching, or by passing them on journeys that
are otherwise unrelated to burglary. Therefore it must
be decided what legitimate (non-burglary related)
behaviours should be included. The crime literature
reveals that the most common drivers for burglary are
the need to sustain a drug addiction36,37,38 or maintain
‘high living’ (i.e. socialising).36,39,40

Therefore, the state variables will be (i) Drugs: the
level of drugs in an agent’s system; (ii) Socialising: a
measure of how much the agent has socialised; and
(iii) Sleep: a measure of the amount of sleep an agent

Table 1. Different types of PECS reactive behaviour

Reactive behaviour

Behaviour Description

Instinctive behaviour An automatic reaction to stimulus such as a parent reacting instinctively to a child’s cry. Instinctive behaviour

can be modelled relatively easily using pre-defined rules which are called up in certain circumstances.

Learned behaviour Similar to instinctive behaviour but with rules that are learnt dynamically.26 cites the example of a car

driver who will instinctively brake if they see a child running across the road.

Drive controlled

behaviour

This type of behaviour is directed by internal drives to satisfy needs. These range from basic needs

required to preserve life (such as the need for food or safety) to social needs and finally to intellectual

needs.26 defines the function to determine drive intensity, T, as

T ¼ f ðN; E;XÞ

where N is the agent’s personal preference for the need; E represents environmental influences; and X denotes other

influences. For example, a drug addict will have a strong drive to take drugs if the need, N, is high because they have

gone without drugs for some time. However, the environment, E must also be taken into account: the drive might be

strong if they are surrounded by other addicts who are also using drugs even if the need, N, is not great.

Emotionally controlled

behaviour

Emotions are similar to drives because, if they are strong enough, they will affect the behaviour of the

agent. Unlike drives, however, they are stimulated externally, not by internal state changes.26 notes that

the intensity of emotions, E, are very hard to model, but defines the following formula:

E ¼ gðI; A;XÞ

where I represents the importance of the event which has generated the emotion, A is the agent’s personal assessment

of the event and X represents other influences.

Deliberative behaviour

Behaviour Description

Constructive behaviour 26discusses how an organism which is able to perform constructive behaviour is able to build an internal

representation of its environment and also construct and deliberate over plans of action which should

allow it to satisfy goals. Goals assembled in this manner are associated with acts of will, the organism

‘‘wants’’ to achieve the goal.26 In a similar fashion to reactive forms of behaviour which have a ‘‘need’’

associated with them, constructive behaviours have an ‘‘importance’’ attached to them by the agent which

will influence their intensity. For example, one agent might attach a higher importance to the pursuit of

gaining knowledge than another. In addition, the closer a goal is to completion, the higher the will asso-

ciated with the goal.26 defines the following function, h, to calculate will intensity,

W:W ¼ hðI;D;XÞ

where I is the importance of the goal, D is the distance from completing the goal and X are other influences.

Reflective behaviour Representing the highest level of behaviour, reflective action relates to the ability to monitor and control

one’s own thought processes. Also, in addition to a model of their environment, reflective organisms have

a model of self which can lead to the most advanced forms of emotion such as an inferiority complex and

jealousy.26 To model this type of behaviour, the PECS agent will have another entire PECS model of itself

within its cognitive module.26

Malleson et al. 5
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has had. Although this is a simplification, it provides
sufficient variety to create realistic daily behaviour. It
also represents an improvement over existing agent-
based models of crime in terms of encapsulating agent
behaviour.13,14 State variables can be thought of as
internal energy levels, e.g. in the same way that a
person with a low energy level will be hungry, an
agent with low drugs/social level/sleep will want to
behave in such a way as to increase the value of the
state variable by taking drugs, socialising, or sleeping.

External variables will also affect behaviour. To
account for this, the motive associated with each state
variable can include external influences and, through
the use of intensity functions, motives can be compared
to each other thus establishing what the agent’s current
action should be. The external influences are specific to
each motive and will be discussed in detail below. In
general, the intensity of a motive, m, is inversely pro-
portional to the size of its state variable, s, i.e. the more
s an agent has, the lower their motive to collect or enact
it will be. Since the population of agents does not need
to be homogeneous, which is one of the benefits of
agent-based modelling, different agents can be affected
by state variables and motives differently. This feature
is incorporated into the model by including a personal
parameter, p, that affects motive intensities such that:

m / p
1

s
ð1Þ

For example, an agent with a large value of p will be
more strongly affected by a particular motive than an
agent with a low value for p even if both agents have the
same state variable level. This can be used to change the
importance that agents place on particular behaviours.
If p¼ 0 then m will be zero and the agent will be unaf-
fected by s. In the absence of external influences or
personal preferences, Figure 2 depicts how motive
intensity varies with state variable size. An exponential
function is used so that as s!0, m! 1 and motives
with the lowest associated state variable are likely to be
the strongest. Figure 3 graphically illustrates how state
variable levels are combined with personal preferences

and external factors to determine the strongest motive
(termed the action-guiding motive).

The levels of the state variables will deteriorate over
time, such as a person becoming hungry as their energy
level drops after a meal. For the purpose of the current
model, the rate that state variables deteriorate can be
used to configure the amount of time that an agent
should spend, on average per day, satisfying the motive.

Burglary is commonly a response to a drug addic-
tion36,37,38,41 so addiction must therefore form part of
the model. In particular, the process of going to pur-
chase drugs will have important influences on the
agent’s cognitive map, making geographical areas
with (and on the way to) large numbers of drug dealers
more susceptible to burglary. Drug taking, in this
instance, is clearly a drive-regulated behaviour as out-
lined in Section 2.3, being dependent on the current
drug level in the agent’s system. In contrast to the gen-
eral form of drive-regulated behaviour, the motive
associated with drug use does not depend on other fac-
tors such as the surrounding environment. Therefore
the strength of an agent’s drug motive, md, can be cal-
culated from their personal preference for drugs, pd and
the drug’s state variable level, sd:

md ¼
pd

sd
ð2Þ

The second activity is socialising. All agents have the
need to socialise which includes visiting friends’ houses,
pubs, etc. The choice of areas that an agent is likely to
visit is very important because it will strongly influence
the size and shape of the agent’s cognitive map. The
social motive, msoc, is dependent on the time of day,
g(t), the agent’s personal preference for socialising,
psoc, and the size of the social state variable, ssoc:

msoc ¼
1

ssoc

� �
gðtÞ þ psoc

2

� �
ð3Þ

The shape of g(t) is illustrated in Figure 4; agents
will desire to socialise more in the evenings than during
the day.
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Figure 2. How motive intensity varies with state variable value (in the absence of external influences).
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The final activity is sleep. All agents are set to sleep
eight hours per day on average, which is a generally
accepted healthy amount.42 We assume that this is the
length people would sleep if not interrupted, and will
ultimately have to make up. The time of day also affects
the strength of the motive so that the desire to sleep is
stronger at night than during the day. The shape of this
function is illustrated in Figure 5. Although this type of
sleep pattern might reflect most people’s habits, it
should be noted that the chaotic lifestyles of many
potential burglars might result in very different sleep

patterns. In general, an agent’s sleep motive intensity,
ms, can be calculated from the sleep state variable level,
ss, the time of day function, f(t), and their personal
preference for sleep, ps, as follows:

ms ¼
1

ss

� �
f ðtÞ þ ps

2

� �
ð4Þ

As discussed previously, it is possible to vary the
rate that the Sleep state variable deteriorates and the

Drug level

Sleep level

Social level

Intensity of drugs motive

Intensity of social motive

Intensity of sleep motive

m = p / s

m =  p f(t) / s

m =  p f(t) / s

Time of 
day, t

Personal 
preference, 

p

Personal 
preference, 

p

Personal 
preference, 

p

Determine 
Strongest 

Motive

Plan 
Actions

Time of 
day, t

Figure 3. How state variables, s, personal preferences, p and external factors (e.g. the time of the day, t) are used in intensity

functions to determine the action-guiding motive. In this example, the agent’s social level is very low (the agent has not socialised in

some time) and this is the strongest motive.

Time of Day, t
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Figure 4. How the social intensity motive varies with time of day, assuming a constant value for the social state variable.
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amount that it increases while an agent is sleeping. In
this manner, the model can be configured such that an
agent will sleep for 8 hours per day on average.

Each motive has an associated goal which the agent
can accomplish to increase the value of the appropriate
state variable and subsequently lower the strength of
the motive. For example, accomplishing the goal of
‘taking drugs’ will increase the value of the Drugs
state variable, reduce the size of the motive and cause
another, larger, motive to start controlling the agent’s
behaviour. To satisfy a goal, however, there are often
numerous sub-goals that must be accomplished first.
For example, with socialising and buying drugs,
wealth is required that must be sought through bur-
glary (a complex action which requires many sub-
goals itself as discussed in Section 3.2). Flowcharts
illustrating how goals can be accomplished via the use
of sub-actions are presented in Figure 6.

3.2. The process of burglary

Finding a property to burgle is the most intricate of all
the agent actions, and consists of numerous goals and
sub-goals. It is also the most important as it will have
the greatest effect on final citywide burglary patterns.
The burglary process can be broken down into three
distinct actions:

1. Deciding where to start looking for victims;
2. Searching for victims;
3. Deciding upon a suitable target.

The advantage of this modular approach is that it
enables different types of burglar to be simulated simply
by replacing one action with another (e.g. how the
agent searches for a target). The main drawback with
this approach, however, is that it does not allow for
purely opportunistic burglary, which is common.43

For example, using the above scheme, it is not possible
for an agent to notice an open door or window and

choose to burgle immediately even if they were not
otherwise considering burglary. They have to make a
conscious decision to start the burglary process regard-
less of their surrounding environment. Including more
opportunistic types of burglary is recommended as an
avenue for future research.

3.2.1. Deciding where to start the search. Burglars
act as ‘optimal foragers’44,45 when they choose target
areas because their decision is based on an analysis of
potential rewards against risks. The model here works
in a similar manner. When deciding where to start
searching, agents consider the communities of which
they are aware and assign a likelihood, l, to every
area, a in their cognitive map, relative to their home,
h, and current location, c:

la ¼ w1 �
1

distðcaÞ

� �
þ w2 � attractivenessðh, aÞ

þ w2 � socialDiff ðh, aÞ þ w4 � prevSuccðaÞ ð5Þ

where

. dist (c,a) represents the distance (in travel time) to
the target from the agent’s current position.
Research has shown that agents are unlikely to
travel far from their homes,41 so farther areas are
less attractive. Here we use a linear decay function.
Attractiveness (h,a) represents the abundance of
attractive goods of the potential target relative to
the agent’s home. Using relative attractiveness pro-
vides for the finding that affluent communities are at
most risk of burglary when they are close to deprived
communities.

. socialDiff (h,a) represents the difference between the
agent’s home area and that of the potential target
(where values of 1 indicate similarity and 0 indicates
dissimilarity) as offenders are more likely to target
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Figure 5. How the sleep intensity motive varies with time of day, assuming a constant value for the sleep state variable.
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areas which they know well and where they feel safe.
The difference is calculated as the Euclidean distance
between all the socio-demographic variables from
the 2001 UK census in each area.

. preSucc(a) is the number of previous successful bur-
glaries which the agent has committed in area a;
numerous successful burglaries are likely to encour-
age the offender to return to the same area. This
‘near repeat’ phenomenon has been found in numer-
ous crime research studies46 and also informs bur-
glary-reduction policies in Leeds.

An extremely important element of Equation 5 is the
variables w1 to w4. These are weights, discussed in fur-
ther detail below, which will influence how important
the different factors are to the different burglars and
depend on the burglar type along with their internal
variables. For example, a ‘professional’ burglar with
access to a car might be unconcerned with the dis-
tance that they need to travel (i.e. a low value for w1)
compared to a ‘chaotic’ burglar with a serious drug
addiction and limited access to transport (i.e. a high
value for w1).

Before applying the weights and calculating l, each
variable must be normalised so that they all have the
same magnitude. To determine the area to which the
offender will travel, roulette wheel selection is used so
that the decision is probabilistic. An agent calculates l
for every area, a, in their memory and then chooses an

area such that the probability of being chosen, P(a), is
proportional to its share of the sum of all l:

PðaÞ ¼
la
,
Xn

i¼0
li

ð6Þ

This probabilistic component makes the decision
more realistic; it is unlikely that a human will always
reach an identical decision even when faced with similar
input information.

3.2.2. Searching for a victim. Research has shown
that burglars do not search randomly for burglary tar-
gets but exhibit identifiable search patterns.44,47 For
example,48 has identified the tear-drop and bulls-eye
patterns. The bulls-eye pattern suggests that the bur-
glar’s search expands outwards from their home (or
another anchor point) such that houses close to the
start of the search have the largest risk. The tear-drop
pattern, on the other hand, stipulates that the journey
to the start of the search is included so that the overall
search pattern looks like a teardrop connecting the
home and location that marks the start of the search.
The search implemented in the model combines both of
these ideas. As the previous section discussed, the offen-
der chooses an area to start their search. They then
travel to their chosen location and start a bulls-eye
like search. On the route to their chosen start location

Purchase Drugs
Have 

sufficient 

sufficient 

sufficient 
wealth?

Travel to drug dealer

Make 
wealth

Purchase Drugs

Socialise
Have 

wealth?
Travel to "social" location

Make 
wealth

Socialise

SleepAt home?

Travel home

Go To Sleep

Work

Have 

wealth?

Travel

Make Wealth

Continue

Can
work?

Burgle

Figure 6. Actions to satisfy goals. Sleeping simply requires the agent to go home first, whereas purchasing drugs or socialising

requires wealth to be generated first. The model includes the possibility of incorporating legitimate employment (‘‘work’’) as well as

burglary (see35 for an example of this type of application) although this feature is not applied here.
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the offender observes properties for burglary suitability
(discussed in the following section) so that if the chosen
area is close to their starting position then the final
search pattern will resemble a bulls-eye, otherwise it
will resemble a tear-drop.

Once the offender reaches a suitable area and begins
a search, the amount of time spent on the search
depends on the characteristics of the offender, with des-
perate offenders spending the shortest amount of time
and often victimising the first empty house they find.49

This search time variable can be varied in the model.
Once it is reached, the burglary process is repeated; the
agent chooses a new start location, travels there and
commences a new search.

3.2.3. Choosing a suitable victim. Once the agent
decides to commit a burglary, they start to examine
all the houses they pass in order to determine their suit-
ability for burglary. This happens on the way to the
target location as well as while they are actually per-
forming the search, as stipulated in the literature.39

Table 2 illustrates the variables that determine the suit-
ability of each property. Overall household suitability is
then calculated by summing the individual components:

suitability�

w5 � CEþ w6 � TVþ w7 �Occþ w8 � Acc
þw9 � Visþ w10 � SecP10

i¼5 wi

ð7Þ

where w5 to w10 are weights that can be applied to each
of the variables in order to personalise the calculation
depending on the burglar type. For example, a ‘profes-
sional’ burglar might be less deterred by security than
an ‘amateur’ and will subsequently have a lower value
for w10. The suitability is normalised to the range 0 to 1
where the most suitable properties will have a value
near 0 and the least suitable near 1.

Equation 7 will return an absolute value for the suit-
ability of a house for a particular agent. The final step is
to determine whether or not the agent is desperate

enough to commit the burglary. ‘Desperateness’ is
based on the intensity of the motive which is currently
driving the agent’s behaviour: if the suitability of a
property is higher (i.e. less suitable) than the intensity
of the motive, then the agent will not attempt a bur-
glary. If, however, the suitability value is lower than the
agent’s motive intensity then the agent might attempt a
burglary. A random element is included such that the
agent is more likely to burgle if the difference between
the suitability of the house and the agent’s motive
intensity is large. This is important because otherwise
the agent’s decision becomes somewhat deterministic
and they are also likely to burgle the first house they
find once they become active (i.e. their next-door neigh-
bour), which is not always realistic. Crime studies have
shown that although burglars are unlikely to travel far,
they will not usually burgle too close to home for fear
of being recognized.50 A gradient of y¼ x2 is chosen so
that, with only small differences between an agent’s
motive intensity and house suitability, they are unlikely
to burgle.

3.3. Different types of burglar agent

Although each burglar uses the same ‘burglary tem-
plate’, by varying weight values it is possible to repre-
sent a wide range of burglar behaviour and, therefore,
simulate different types of burglary. Aggregate tech-
niques traditionally employed in crime modelling,
such as hotspot modelling51 or regression analysis,52

cannot incorporate this level of behavioural complexity
to simulate the effects of heterogeneous burglar behav-
iour on city-wide crime rates.

However, understanding the different ‘types’ of bur-
glar behaviour is non-trivial. Although there is a large
body of literature that attempts to classify criminal pro-
pensity,53 there is less research that attempts to classify
burglar behaviour. Most burglaries were found to be
committed by low income amateur offenders for
relatively low returns.54 This is consistent with the
findings of55 and56 who found that the majority of

Table 2. Variables that determine a burglar’s assessment of household burglary suitability

Environment variable How it affects burglar behaviour

Collective efficacy (CE) High levels of CE make the area less attractive to burglars because the community appears cohesive

and neighbours/passers-by are likely to notice someone acting suspiciously.

Traffic volume (TV) High levels of traffic volume make the houses on a road less attractive because it is difficult to access

a property without being seen by passersby.

Accessibility (Acc) Houses with few possible entrances are more difficult to enter without being seen by others.

Occupancy (Occ) Houses which are likely to be occupied are less attractive.

Visibility (Vis) Houses which are highly visible to neighbours/passers-by are more difficult to enter.

Security (Sec) High levels of security can present problems to potential burglars.
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crimes were not committed in a planned, systematic
way by ‘professionals’. At the simplest level, burglary
behaviour can therefore be divided into two classes:
amateurs and professionals. However, being an ‘ama-
teur’ does not necessarily mean that no planning
goes into a burglary, and not all burglaries in these
situations are purely opportunistic.57 For example,58

differentiate between ‘opportunistic’, ‘search’ (an
offender becomes active and then searches for an imme-
diate victim) and ‘planned’ (the offender returns to a
previously found opportunity at a later time/date)
offences and argue that over half the offences were
planned. Similarly,37 propose the labels ‘professional’,
‘journeyman’ and ‘novice’ when referring to burglar
types. However, it is highly probable that, when inter-
viewed after the event, a burglar might rationalise
the burglary to a much greater extent than they did at
the time.57

To support the crime literature, and gain an insight
into the specific behaviour found in the study area of
Leeds, local crime-reduction practitioners at Safer
Leeds were interviewed. They suggested that the differ-
ent types of burglar behaviour were very similar to
those already outlined in the literature. Table 3 pro-
vides the types recommended by Safer Leeds and the
literature.

4. Building the theoretical model

The previous section has outlined a means of incorpo-
rating realistic burglar behaviour into an agent-based
model. To test the design, a model was built
using the Java programming language and the
Repast agent-based modelling toolkit (available at

http://repast.sourceforge.net/ (2008)) The model is
extremely computationally expensive and, therefore,
was executed using high-performance computing pro-
vided by the UK’s National Grid Service (NGS).59 For
more information about the model and the scenario
which is discussed below, see.12

4.1. Crime data and model setup

Although the model could be applied to any urban
area, due to data availability it is presently based in
the city of Leeds, UK. Crime data were provided by
Safer Leeds which contains, along with other informa-
tion, a dataset of people who have somehow been
involved with a crime event (termed ‘‘nominals’’).
It must be noted that involvement does not necessarily
mean the person was ultimately convicted of the crime
– they could be suspects or simply be wanted for ques-
tioning. Therefore it is inevitable that the dataset will
contain people who were not actually involved in the
crime at all.60 Nevertheless, the dataset is the best
empirical data for offending activities available and it
will be used to validate the behaviour of agents in the
model by comparing the behaviour of nominals to that
of simulated agents.

Each entry in the dataset contains the home post-
code of the nominal’s given address when they were
added as well as the postcode in which the associated
crime was committed. Because the simulation only
covers part of the entire city (as discussed in the follow-
ing section), the nominal data set was filtered to contain
only people who lived within the simulation boundary
and were associated with an offence within the
boundary.

Table 3. A classification system for burglar types, which illustrates how the different environmental variables affect an agent’s

burglary decisions (where to start searching and what makes an individual property suitable)

Type Description

Chaotic An opportunist who is desperate to generate wealth in any means possible (i.e. through burglary or other

types of crime) in order to fund a drug addiction. This high level of drug addiction is reflected by a chaotic

lifestyle. Often unemployed and with limited means of transport, they are unlikely to travel far to search

for a victim. Also will want to avoid confrontation.

Local opportunist Again an opportunist but will not commit crime if it is too difficult (they will be deterred by security and

guardianship). Not necessarily a ‘‘full time’’ burglar, they are often younger, do not need to support a drug

habit, occasionally have legitimate employment and will only burgle if a good opportunity presents itself.

Their limited access to transport means that they will only travel short distances.

Travelling chaotic Similar to the chaotic type but more aware of the best opportunities and will travel further to reach them.

For example, travelling to an insecure car park to commit theft from a motor vehicle. Otherwise very

similar to the chaotic type.

Organised/professional The most organised type, there is a considerable amount of planning involved in a burglary. The type is

characterised by low levels of drug addiction, occasional legitimate employment, skills to evade security

precautions and will travel the furthest distances for the greatest rewards. Confident in ability to ‘‘blend

in’’ with community and tackle security precautions.

Malleson et al. 11



XML Template (2010) [12.10.2010–9:35am] [1–22]
K:/SIM/SIM 384124.3d (SIM) [PREPRINTER stage]

Offender agents in the model are generated directly
from entries in the nominal dataset by creating one
agent per entry. Agents are assigned to a house
(chosen at random) from within the output area sur-
rounding the nominal postcode centroid. Creating one
agent per nominal means that prolific offenders in the
data (those who commit a number of burglaries) are
actually represented by a number of different agents
who live in the same area (although not in the same
house). Therefore there is no concept of prolific offend-
ing in the current model configuration; every offender
in the model is identical with respect to their behaviour.
An avenue for future work is to experiment with
heterogeneous behaviour and create different types of
burglar agent as discussed in Section 3.3. This initial

configuration of agents is unlikely to be an accurate
picture of offending in the city and will therefore limit
the potential of the model to predict overall burglary
rates. However, it does not detract from the ability of
the model to simulate burglar behaviour. In fact, it
makes the task easier because the behaviour of nomi-
nals in the crime data can be compared directly to the
behaviour of simulated burglars.

4.2. Environmental data

The scenario itself is based in a part of east Leeds which
is home to a large regeneration project called EASEL
(East and South East Leeds) as illustrated in Figure 7.
This area was chosen because it is a useful candidate for

Figure 7. The EASEL area in Leeds, UK.
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predictive modelling. With respect to environmental
data, the following sources were used to construct the
required layers of the virtual environment:

. Ordnance Survey MasterMap data. This highly
detailed spatial dataset consists of three separate
layers:
� The Topographic Area layer contains building

boundaries and can be used to construct virtual
houses (these are the places people live and where
the burglar agents can choose to burgle).

� The Address Layer which can be used to distin-
guish between different types of building (i.e.
offices, house, garages etc);

� The Integrated Transport Layer contains different
types of roads such as motorways, major/minor
roads, alleyways, pedestrianised streets etc. This
can be used to build the transport network which
the agents use to travel around the environment.

. Output Area and Super Output Area boundaries.
The Output Area (OA) is the smallest geographical
area boundary used to provide a spatial reference
to the 2001 UK census and contains approximately
100 households. This is used to represent demo-
graphic community factors that might influence
the behaviour of a potential burglar. Super Output
Area (SOA) boundaries are built by combining a
number of OA boundaries and are used later for
data aggregation when validating the model (see
Section 5).

. The Output Area Classification.61,62 A classification
scheme that groups individual output areas into dis-
tinct types based on the values of their socio/demo-
graphic census variables. This can be used to
distinguish between different types of community.

The locations of potential drug dealers in the model
were established directly from the crime data, creating a
virtual dealer address for every point in the data set
where a dealing-related crime had been recorded.
Creating places where the agents are likely to socialise,
however, is considerably more problematic. In light of
the lack of empirical evidence to guide the choice of
social address, broad assumptions must be made. At
this stage, the National Land Use Database (NLUD)
code is used to estimate where burglar agents might go
to socialise. Social places are considered to be U093
(‘‘Restaurants and cafes’’) and U094 (‘‘Public houses
and bars’’). It is important to note that none of these
decisions are fixed and it would be a trivial operation to
change social-place addresses in the future as new data
becomes available. An immediate area for future work
should be to estimate where friends of the offender
might live, rather than solely using restaurants and
pubs for socialising places.

It is also necessary to decide, from the set of all
available locations, which one an agent chooses to
travel to if they need to visit a drug dealer or to social-
ise. This is one of the most difficult features to estimate
as there are very limited data available to assist in
making the assumptions. With regards to drug dealers,
it was decided that the agent is assigned a drug dealer at
random and always uses the same one. It is likely that
in reality a person builds a preference for certain deal-
ers but often travels to different addresses depending on
the abundance of supply, but this avenue of exploration
is beyond the scope of this work. With regards to social
locations, it is assumed that an agent is more likely to
travel to a social location that is in a community of a
similar type to their own. Again this is likely to be too
simplistic but can be investigated further in the future.

Calibration is still required for some variables
because data or expert opinions on their values
are not available. These variables are presented in
Table 4. While an automated calibration using a genetic
algorithm would have been ideal this is not practical
with current run-times, even with the model parallelised
(as is necessary for a single run). The model was there-
fore initialised using 2001 census and offender data and
calibrated by hand against 2001 victim data (details of
these variables and the calibration can be found in12).

Because the simulation is probabilistic, each run will
produce slightly different results. For this reason the
simulation was executed 50 times and the results col-
lated to reduce variability. This means that there are
many more burglary events in the simulated data com-
pared to the real data, although this is not a problem in
the following analyses as the geographical distribution
of relative proportions will be used rather than absolute
crime counts.

5. Results

The model was calibrated against 2001 victim data
(Figure 8a), and the best result is shown in Figure 8b.
The reasonable match between these two datasets sug-
gests the model can, structurally at least, replicate real
aggregate crime figures in space. To validate the predic-
tive power of the model it was run with 2004 offender
data, to predict 2004 victim data (Figure 8d). There is
an inherent difficulty in the prediction in that in some
cases the absence of a 2004 census dataset meant that
the 2001 census had to be used during initialisation. As
can be seen (Figure 8c), the results from the model are
nonetheless broadly good at identifying crime-suscepti-
ble areas, though the most intense areas of crime have
shifted. This suggests the model, and the theories it is
founded on, do reasonably well at replicating the
spatial patterns of the aggregate crime density.
Further comparisons, including a multi-scale statistical
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comparison, can be found in.12 Here, however, we
would like to concentrate on some of the detailed
behaviour, reflecting on the extent to which the model
replicates individual behaviour and the areas that still
need development in both the model and theory.

While the model match with victim data at the
aggregate scale is fairly good, this makes no assessment
of whether the correct offenders are committing the
correct crimes, or, more generally, whether there are
the right levels of offender flows between areas. A
more thorough examination of the offending behaviour
can be obtained by generating origin-destination matri-
ces from the real and simulated data which illustrate
how many people travelled between each area to
commit a burglary. The matrices can be compared
using traditional goodness-of-fit statistics that quanti-
tatively illustrate how similar they are. If the model is
accurately reflecting the behaviour of people in the real
dataset, then the matrices will be similar. Before gener-
ating the matrices, however, it must be determined how

the burglary points will be aggregated. Using larger
areal boundaries is more likely to generate matrices
that are similar but provides a lower resolution assess-
ment of the success of the model. Similar studies (e.g.63)
have used ward area boundaries, although these are
deemed too large for use here (there are only nine
wards that cover the simulation boundary). Instead,
Lower Super Output Area (SOA) boundaries will be
used as these are smaller than wards (there are 58
SOAs covering the study area). Using the R2 statistic
to compare the simulated and observed origin/destina-
tion matrices results in a similarity of 0.22 (Table 5; i.e.
the model is able to explain 22% of the variation in the
observed data). Although this value is not substantially
lower than other studies – ,64 for example, note that an
R2 value of only 0.36 is generally on par with other
criminal justice studies – it is lower than expected. It
is highly likely, however, that by using administratively-
defined areal boundaries the analysis is susceptible to
the modifiable areal unit problem,65,66 mis-representing

Figure 8. a) Real crime data, 2001; b) Results of best model calibration to 2001 data; c) Model prediction for 2004; d) Real crime

data for 2004.
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boundary-agnostic short-distance flows. Aggregating to
a square grid instead might mitigate these prob-
lems.67,68 Therefore the data were also aggregated to
a square grid with cells of a size equal to the mean of
the SOAs that cover the simulation area (0.42km2).
This resulted in an R2 value of 0.30 which, although
more accurate than the SOA-aggregated data, is still
relatively low.

Insight into the location of the errors can be gained
by examining the distance between each offender’s
home and the crime site in the two datasets. Figure 9
illustrates a histogram of the distances travelled and

Table 6 provides the mean and standard deviation of
the distances. It is apparent that, on average, agents in
the model are likely to travel further to their crime site
than nominals in the real data. This may mean that the
burglar agents are both more mobile and willing to
travel further in the simulation than in the real world.

Figure 9. A histogram comparing the distance between the home location and the crime location for agents in the model and

nominals in the offender data set.

Table 5. The goodness-of-fit (measured using the SRMSE

and R2) between origin-destination matrices for the real and

simulated data

Aggregation SRMSE R2

SOA 5.81 0.22

Grid 6.60 0.30

Table 6. The mean and standard deviation of the distances

travelled by agents in the simulation and nominals in the real data

Data

Mean commute

distance (m)

Standard

deviation (3sf)

Real data 862 833

Simulated data 1630 1090

Table 4. Variables used in the calibration

PECS variables House and Community parameters

WorkGain Accessibility importance

SleepGain Visibility importance

SocialGain Security importance

DrugsGain Traffic volume importance

CostSocialise Collective efficacy importance

CostDrugs Occupancy importance

ConstTravelTime Attractiveness importance

DeteriorateAmount
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A first-sweep solution to this would be to cap the dis-
tance travelled to a more realistic value to better cap-
ture this phenomenon. However, ultimately this may
reflect the absence of the most opportunistic burglars,
and those burglars desperate enough to target their
neighbours.

As Section 4 discussed, the nominal data used here is
unlikely to fully reflect the real system even if we had
information on short-distance burglars, and so a more
pertinent verification of the model would be to see if the
behaviour of individual agents replicates the behaviour
we understand for specific criminal types for which we

Figure 10. Comparing an agent’s awareness of the environment to the locations of their burglaries and anchor points. It is important

to note that the crime data here is simulated and that offender locations are allocated randomly within Output Areas based

on postcodes. Therefore the map does not show the true locations of nominal or burglary addresses from real data at the

household level.
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do have data. Major environmental criminology theo-
ries such as routine activity2 and crime pattern theory3

as well as numerous empirical studies39,69 suggest that
an offender becomes aware of opportunities as they
travel around the city on potentially legitimate busi-
ness. Burglaries are then likely to occur in the areas
that the offenders know well, which are commonly
around their home and other anchor points such as
friends’ houses, drug dealers etc. The model here acts
in a similar manner; as the agent travels around their
environment they remember the houses and communi-
ties that they have passed and these form their overall
awareness space. Figure 10 depicts such an awareness
space for an agent at the end of a simulation as well as

the locations of the burglaries that they have commit-
ted, the places that they visited to socialise and the
address of their drug dealer. It is apparent that, as stip-
ulated by crime pattern theory, the agent’s awareness
space is built up around their anchor points and the
routes between them. This then determines where they
are the most likely to commit burglary, i.e. burglaries
occurring in the places that they are the most familiar
with. Overall this demonstrates that the model is closely
replicating theory and filling a gap significant in current
modelling practice.

Interestingly, however, there are no burglaries com-
mitted by the observed agent in the vicinity of the
agent’s drug dealer. This seems counter-intuitive

Figure 11. The agent’s journey-to-crime and to purchase drugs. Time is indicated on the vertical axis.
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because one might expect that, as the offender will be
very familiar with the drug dealer’s neighbourhood,
they are likely to commit crimes there (assuming
there are available crime opportunities). However, as
Figure 11 demonstrates, the simulated agent in this
case commits a burglary along routes between their
home and other anchor points (in this case their drug
dealer). The process is as follows:

1. The agent decides to take drugs but first requires
money.

2. They travel to a nearby area that they know well in
order to search for a victim (in this case the target is
on the route to their drug dealer; this type of behav-
iour is stipulated by crime pattern theory3).

3. Once they have completed the burglary they travel to
the drug dealer and then back home.

This demonstrates a close correspondence with crim-
inology theory, which is only possible when individual
virtual offenders are equipped with a realistic beha-
vioural framework.

To determine how the development of the agent’s
knowledge of their environment compares to their
offending behaviour, Figure 12 illustrates how the
agent’s awareness space develops over the course of
the simulation. As the agent visits a larger number of
activity nodes they become aware of a greater number
of opportunities and are more likely to travel further
afield for burglary. This factor has also been found
by quantitative studies; offenders who are older and
have access to transport have greater awareness
spaces and are likely to travel further to commit
crime than younger people who have narrower aware-
ness spaces.41,70,71

Figure 12. The development of an agent’s awareness space over the course of a simulation.

18 Simulation: Transactions of the Society of Modeling and Simulation International 0(00)



XML Template (2010) [12.10.2010–9:35am] [1–22]
K:/SIM/SIM 384124.3d (SIM) [PREPRINTER stage]

To complete the comparison of simulated behaviour
to criminology theory, Figure 13 illustrates the search
behaviour of a simulated burglar. The burglar leaves
their home, travels to a chosen location and then
begins a search in the area. As they travel to the loca-
tion they observe the suitability of the houses that they
pass, so if an opportunity presents itself, then they will
take it. If they reach the desired area without having
found a victim, they will begin a search of the area and,
in this case, the agent is able to find a suitable target in
the search area. As Section 3.2.2 discussed, this type
of searching behaviour is consistent with understanding
of real and theoretical criminal movement in the
literature.48

6. Conclusions

This paper presents a first attempt to replicate the indi-
vidual behaviour of those engaging in burglary using a
psychologically realistic framework. It details the PECS
framework, current criminological theory that might be
modelled better utilising such a framework, and
describes an individual-based model of burglary that
enacts this potential. The model takes into account
the daily routines of criminals, their drivers, and the
opportunities presented by their environment. Current
aggregate mathematical models cannot take individual-
level behaviour of this type into account, and yet crim-
inological theory centres on its absolute importance in

Figure 13. An agent’s search behaviour. Time is displayed on the vertical axis.
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understanding crime. As such, the model presented rep-
resents a significant step towards a criminological
model with a greater verisimilitude and therefore
greater potential, both as a predictive tool and as a
tool for assessing and understanding how individual
behaviour builds to a regional crime pattern.

At an aggregate level the model does a reasonable job
of modelling the spatial distribution of the crimes.
However, when we look at the match between individual
behaviour in the real world and the model, we still have
some ground to cover. The matching of the aggregate
statistics despite the omission of key criminal types and
datasets indicates that there are broad equifinality issues
with crime data, and that a range of theoriesmay replicate
the aggregate patterns within the error ranges expected of
aggregate modelling. It is only by comparing behaviour
and statistics that track individual movements more clo-
sely, like journey-to-crime paths, that we may distinguish
whether particular theories are an appropriate explana-
tion of aggregate data. Given this, it is plain that models
such as this, which concentrate on the individual drivers,
responses, and behaviour of offenders, are the only mech-
anism by which regional spatio-temporal patterns of
crime can be reliably related to criminological theory.
Future developments of themodel will represent a greater
diversity of criminal types, particularly distinguishing
between opportunitistic and professional burglars with
greater detail; however it should be clear from these initial
results that there is considerable potential for models
enacting a more realistic, individual-level behavioural
framework, both in terms of crime prediction, and in
terms of theory testing and development.
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